柔性的,可回收的,高导电性的自愈合聚合物基相变膜热管理

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Minqiang Wu, Yimin Xuan, Xianglei Liu, Yaoge Jing, Tingxian Li
{"title":"柔性的,可回收的,高导电性的自愈合聚合物基相变膜热管理","authors":"Minqiang Wu, Yimin Xuan, Xianglei Liu, Yaoge Jing, Tingxian Li","doi":"10.1002/adfm.202506229","DOIUrl":null,"url":null,"abstract":"Phase change materials (PCMs) hold significant promise for thermal energy storage and management. However, challenges such as low thermal conductivity, liquid leakage, solid rigidity, and poor recyclability hinder their practical applications. Herein, a facile yet effective strategy for fabricating highly conductive, flexible, and recyclable polymer-based phase change composites (PCCs) is proposed. The physically crosslinked dual polymer networks endow the PCC film with excellent latent heat (158.6 J g<sup>−1</sup>), tunable mechanical stress (3.95–8.59 MPa), thermal-regenerating capability, and recyclability utilization. By utilizing the shear-induced alignment of graphite nanoplatelets (GNPs), the proposed PCC films demonstrate a remarkable thermal conductivity of 6.24 W m<sup>−1</sup> K<sup>−1</sup> at a GNP loading of 10 wt.%, achieving a thermal conductivity enhancement efficiency of 302%. Moreover, the flexible PCCs-based energy device demonstrates effective thermal regulation in electronic devices and wearable thermal management. This work provides a cost-effective avenue for the scalable fabrication of thermally conductive, flexible, and recyclable PCCs toward various thermal management applications.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"227 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexible, Recyclable, and Highly Conductive Self-Healing Polymer-Based Phase Change Films for Thermal Management\",\"authors\":\"Minqiang Wu, Yimin Xuan, Xianglei Liu, Yaoge Jing, Tingxian Li\",\"doi\":\"10.1002/adfm.202506229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phase change materials (PCMs) hold significant promise for thermal energy storage and management. However, challenges such as low thermal conductivity, liquid leakage, solid rigidity, and poor recyclability hinder their practical applications. Herein, a facile yet effective strategy for fabricating highly conductive, flexible, and recyclable polymer-based phase change composites (PCCs) is proposed. The physically crosslinked dual polymer networks endow the PCC film with excellent latent heat (158.6 J g<sup>−1</sup>), tunable mechanical stress (3.95–8.59 MPa), thermal-regenerating capability, and recyclability utilization. By utilizing the shear-induced alignment of graphite nanoplatelets (GNPs), the proposed PCC films demonstrate a remarkable thermal conductivity of 6.24 W m<sup>−1</sup> K<sup>−1</sup> at a GNP loading of 10 wt.%, achieving a thermal conductivity enhancement efficiency of 302%. Moreover, the flexible PCCs-based energy device demonstrates effective thermal regulation in electronic devices and wearable thermal management. This work provides a cost-effective avenue for the scalable fabrication of thermally conductive, flexible, and recyclable PCCs toward various thermal management applications.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"227 1\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202506229\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202506229","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

相变材料(PCMs)在热能储存和管理方面具有重要的前景。然而,诸如导热系数低、液体泄漏、固体刚性和可回收性差等挑战阻碍了它们的实际应用。本文提出了一种简单而有效的制造高导电、柔性和可回收聚合物基相变复合材料(PCCs)的策略。物理交联的双聚合物网络使PCC薄膜具有优良的潜热(158.6 J g−1)、可调的机械应力(3.95 ~ 8.59 MPa)、热再生能力和可回收利用性。通过利用石墨纳米片(GNPs)的剪切诱导排列,所提出的PCC薄膜在GNP负载为10 wt.%时表现出6.24 W m−1 K−1的显著导热性,实现了302%的导热增强效率。此外,基于柔性pccs的能量器件在电子器件和可穿戴热管理中显示出有效的热调节。这项工作为导热、柔性和可回收的PCCs的可扩展制造提供了一条经济有效的途径,可用于各种热管理应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Flexible, Recyclable, and Highly Conductive Self-Healing Polymer-Based Phase Change Films for Thermal Management

Flexible, Recyclable, and Highly Conductive Self-Healing Polymer-Based Phase Change Films for Thermal Management
Phase change materials (PCMs) hold significant promise for thermal energy storage and management. However, challenges such as low thermal conductivity, liquid leakage, solid rigidity, and poor recyclability hinder their practical applications. Herein, a facile yet effective strategy for fabricating highly conductive, flexible, and recyclable polymer-based phase change composites (PCCs) is proposed. The physically crosslinked dual polymer networks endow the PCC film with excellent latent heat (158.6 J g−1), tunable mechanical stress (3.95–8.59 MPa), thermal-regenerating capability, and recyclability utilization. By utilizing the shear-induced alignment of graphite nanoplatelets (GNPs), the proposed PCC films demonstrate a remarkable thermal conductivity of 6.24 W m−1 K−1 at a GNP loading of 10 wt.%, achieving a thermal conductivity enhancement efficiency of 302%. Moreover, the flexible PCCs-based energy device demonstrates effective thermal regulation in electronic devices and wearable thermal management. This work provides a cost-effective avenue for the scalable fabrication of thermally conductive, flexible, and recyclable PCCs toward various thermal management applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信