分子插层诱导NiPS3单晶磁序的变化

IF 7.2 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Nirman Chakraborty, Adi Harchol, Beatriz Costa Arnold, Kusha Sharma, Diksha Prabhu Gaonkar, Azhar Abu-Hariri, Rajesh Kumar Yadav, Muhamed Dawod, Anna Eyal, Yaron Amouyal, Thomas Brumme, Thomas Heine, Doron Naveh, Efrat Lifshitz
{"title":"分子插层诱导NiPS3单晶磁序的变化","authors":"Nirman Chakraborty, Adi Harchol, Beatriz Costa Arnold, Kusha Sharma, Diksha Prabhu Gaonkar, Azhar Abu-Hariri, Rajesh Kumar Yadav, Muhamed Dawod, Anna Eyal, Yaron Amouyal, Thomas Brumme, Thomas Heine, Doron Naveh, Efrat Lifshitz","doi":"10.1021/acs.chemmater.4c02724","DOIUrl":null,"url":null,"abstract":"Intercalation is a robust method for tuning the physical properties of a vast number of van der Waals (vdW) materials. However, the prospects of using intercalation to modify magnetism in van der Waals (vdW) systems and the associated mechanisms have not been adequately studied. In this work, we modulated magnetic order in XY antiferromagnet NiPS<sub>3</sub> single crystals by introducing pyridine molecules into the vdW’s gap under different thermal conditions. X-ray diffraction measurements indicated pronounced changes in the lattice parameter <i>β</i>, while magnetization measurements at in-plane and out-of-plane configurations exposed reversal trends in the crystals’ Néel temperatures through intercalation/deintercalation processes. The changes in magnetic ordering were also supported by three-dimensional thermal diffusivity experiments. The preferred orientation of the pyridine dipoles within the vdW gaps was deciphered <i>via</i> polarized Raman spectroscopy. The results highlighted the relationship between the preferential alignment of the intercalants, thermal transport, and crystallographic disorder, along with the modulation of anisotropy in the magnetic order. DFT + <i>U</i> calculations indicated that the varying interlayer exchange interactions, regulated by intercalants, were responsible for modulating samples’ magnetic ordering. The study uncovers the possible merit of intercalation for manipulating spin orientations in spin electronics and advanced quantum devices.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"8 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Change in Magnetic Order in NiPS3 Single Crystals Induced by a Molecular Intercalation\",\"authors\":\"Nirman Chakraborty, Adi Harchol, Beatriz Costa Arnold, Kusha Sharma, Diksha Prabhu Gaonkar, Azhar Abu-Hariri, Rajesh Kumar Yadav, Muhamed Dawod, Anna Eyal, Yaron Amouyal, Thomas Brumme, Thomas Heine, Doron Naveh, Efrat Lifshitz\",\"doi\":\"10.1021/acs.chemmater.4c02724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intercalation is a robust method for tuning the physical properties of a vast number of van der Waals (vdW) materials. However, the prospects of using intercalation to modify magnetism in van der Waals (vdW) systems and the associated mechanisms have not been adequately studied. In this work, we modulated magnetic order in XY antiferromagnet NiPS<sub>3</sub> single crystals by introducing pyridine molecules into the vdW’s gap under different thermal conditions. X-ray diffraction measurements indicated pronounced changes in the lattice parameter <i>β</i>, while magnetization measurements at in-plane and out-of-plane configurations exposed reversal trends in the crystals’ Néel temperatures through intercalation/deintercalation processes. The changes in magnetic ordering were also supported by three-dimensional thermal diffusivity experiments. The preferred orientation of the pyridine dipoles within the vdW gaps was deciphered <i>via</i> polarized Raman spectroscopy. The results highlighted the relationship between the preferential alignment of the intercalants, thermal transport, and crystallographic disorder, along with the modulation of anisotropy in the magnetic order. DFT + <i>U</i> calculations indicated that the varying interlayer exchange interactions, regulated by intercalants, were responsible for modulating samples’ magnetic ordering. The study uncovers the possible merit of intercalation for manipulating spin orientations in spin electronics and advanced quantum devices.\",\"PeriodicalId\":33,\"journal\":{\"name\":\"Chemistry of Materials\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.chemmater.4c02724\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.chemmater.4c02724","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

插层是一种校正大量范德华(vdW)材料物理性质的可靠方法。然而,利用插层修饰范德华体系磁性的前景及其相关机制尚未得到充分的研究。在不同的热条件下,我们通过在vdW隙中引入吡啶分子来调制XY反铁磁体NiPS3单晶的磁序。x射线衍射测量表明晶格参数β发生了明显的变化,而面内和面外构型的磁化测量表明,晶体的n温度通过插/脱插过程发生了反转趋势。三维热扩散实验也证实了磁有序的变化。利用偏振拉曼光谱分析了吡啶偶极子在vdW间隙内的择优取向。结果强调了插层物的优先排列、热输运和晶体无序之间的关系,以及磁顺序的各向异性调制。DFT + U计算表明,层间交换相互作用的变化是由嵌入剂调节的,负责调节样品的磁有序。该研究揭示了嵌入在自旋电子学和先进量子器件中操纵自旋方向的可能优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Change in Magnetic Order in NiPS3 Single Crystals Induced by a Molecular Intercalation

Change in Magnetic Order in NiPS3 Single Crystals Induced by a Molecular Intercalation
Intercalation is a robust method for tuning the physical properties of a vast number of van der Waals (vdW) materials. However, the prospects of using intercalation to modify magnetism in van der Waals (vdW) systems and the associated mechanisms have not been adequately studied. In this work, we modulated magnetic order in XY antiferromagnet NiPS3 single crystals by introducing pyridine molecules into the vdW’s gap under different thermal conditions. X-ray diffraction measurements indicated pronounced changes in the lattice parameter β, while magnetization measurements at in-plane and out-of-plane configurations exposed reversal trends in the crystals’ Néel temperatures through intercalation/deintercalation processes. The changes in magnetic ordering were also supported by three-dimensional thermal diffusivity experiments. The preferred orientation of the pyridine dipoles within the vdW gaps was deciphered via polarized Raman spectroscopy. The results highlighted the relationship between the preferential alignment of the intercalants, thermal transport, and crystallographic disorder, along with the modulation of anisotropy in the magnetic order. DFT + U calculations indicated that the varying interlayer exchange interactions, regulated by intercalants, were responsible for modulating samples’ magnetic ordering. The study uncovers the possible merit of intercalation for manipulating spin orientations in spin electronics and advanced quantum devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemistry of Materials
Chemistry of Materials 工程技术-材料科学:综合
CiteScore
14.10
自引率
5.80%
发文量
929
审稿时长
1.5 months
期刊介绍: The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信