Long Ni, Cuiqing Zhou, Lu Shen, Ke Yang, Yinfu Luo, Liwei Yan, Shuang Xia, Mei Liang, Shengtai Zhou, Huawei Zou
{"title":"含有三氟甲基和硅氧烷部分的轻质共聚聚酰亚胺泡沫,用于隔热和疏水应用","authors":"Long Ni, Cuiqing Zhou, Lu Shen, Ke Yang, Yinfu Luo, Liwei Yan, Shuang Xia, Mei Liang, Shengtai Zhou, Huawei Zou","doi":"10.1021/acsami.5c05782","DOIUrl":null,"url":null,"abstract":"Lightweight porous materials with integrated cushioning and shock absorption, excellent thermal insulation, and hydrophobicity demonstrate a broad application prospect in high-end engineering sectors. Herein, the fabrication of lightweight polyimide foams (PIFs) containing trifluoromethyl and siloxane moieties was proposed by adopting copolymerization and microwave-assisted foaming processes. The synthesis and preparation of fluorine- and silicon-containing polyester ammonium salt (PEAS) precursor powders and subsequent PIFs, as well as the relationship and mechanism between structure and properties, were systematically explored. The construction of the anisotropic pore structure was attributed to the “bottom-up” directional foaming behavior of the microwave-assisted foaming process, which endowed PIFs with different traits with respect to the pore growth direction. The resulting copolymerized PIFs displayed low density (18.3–27.7 kg/m<sup>3</sup>), enhanced mechanical flexibility (compressive strength improvement of 26.2%, compression response rate between 97.5 and 99.1%), excellent thermal stability (<i>T</i><sub>5%</sub> > 485.2 °C), and thermal insulation performance. Combining the micro/nano pore structure with the presence of hydrophobic trifluoromethyl and siloxane moieties, PIFs exhibited exceptional hydrophobicity with the water contact angle, reaching as high as 145.9° in the vertical direction (parallel to pore growth direction) and 136.3° in the horizontal direction (perpendicular to pore growth direction). Therefore, lightweight, mechanically flexible, thermally insulating, and hydrophobic PIFs were successfully prepared by the proposed approach, which demonstrate potential applications in the aerospace, transportation, microelectronics, and nuclear energy sectors, among others.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"125 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lightweight Copolymerized Polyimide Foams Containing Trifluoromethyl and Siloxane Moieties for Thermal Insulation and Hydrophobic Applications\",\"authors\":\"Long Ni, Cuiqing Zhou, Lu Shen, Ke Yang, Yinfu Luo, Liwei Yan, Shuang Xia, Mei Liang, Shengtai Zhou, Huawei Zou\",\"doi\":\"10.1021/acsami.5c05782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lightweight porous materials with integrated cushioning and shock absorption, excellent thermal insulation, and hydrophobicity demonstrate a broad application prospect in high-end engineering sectors. Herein, the fabrication of lightweight polyimide foams (PIFs) containing trifluoromethyl and siloxane moieties was proposed by adopting copolymerization and microwave-assisted foaming processes. The synthesis and preparation of fluorine- and silicon-containing polyester ammonium salt (PEAS) precursor powders and subsequent PIFs, as well as the relationship and mechanism between structure and properties, were systematically explored. The construction of the anisotropic pore structure was attributed to the “bottom-up” directional foaming behavior of the microwave-assisted foaming process, which endowed PIFs with different traits with respect to the pore growth direction. The resulting copolymerized PIFs displayed low density (18.3–27.7 kg/m<sup>3</sup>), enhanced mechanical flexibility (compressive strength improvement of 26.2%, compression response rate between 97.5 and 99.1%), excellent thermal stability (<i>T</i><sub>5%</sub> > 485.2 °C), and thermal insulation performance. Combining the micro/nano pore structure with the presence of hydrophobic trifluoromethyl and siloxane moieties, PIFs exhibited exceptional hydrophobicity with the water contact angle, reaching as high as 145.9° in the vertical direction (parallel to pore growth direction) and 136.3° in the horizontal direction (perpendicular to pore growth direction). Therefore, lightweight, mechanically flexible, thermally insulating, and hydrophobic PIFs were successfully prepared by the proposed approach, which demonstrate potential applications in the aerospace, transportation, microelectronics, and nuclear energy sectors, among others.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"125 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.5c05782\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c05782","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Lightweight Copolymerized Polyimide Foams Containing Trifluoromethyl and Siloxane Moieties for Thermal Insulation and Hydrophobic Applications
Lightweight porous materials with integrated cushioning and shock absorption, excellent thermal insulation, and hydrophobicity demonstrate a broad application prospect in high-end engineering sectors. Herein, the fabrication of lightweight polyimide foams (PIFs) containing trifluoromethyl and siloxane moieties was proposed by adopting copolymerization and microwave-assisted foaming processes. The synthesis and preparation of fluorine- and silicon-containing polyester ammonium salt (PEAS) precursor powders and subsequent PIFs, as well as the relationship and mechanism between structure and properties, were systematically explored. The construction of the anisotropic pore structure was attributed to the “bottom-up” directional foaming behavior of the microwave-assisted foaming process, which endowed PIFs with different traits with respect to the pore growth direction. The resulting copolymerized PIFs displayed low density (18.3–27.7 kg/m3), enhanced mechanical flexibility (compressive strength improvement of 26.2%, compression response rate between 97.5 and 99.1%), excellent thermal stability (T5% > 485.2 °C), and thermal insulation performance. Combining the micro/nano pore structure with the presence of hydrophobic trifluoromethyl and siloxane moieties, PIFs exhibited exceptional hydrophobicity with the water contact angle, reaching as high as 145.9° in the vertical direction (parallel to pore growth direction) and 136.3° in the horizontal direction (perpendicular to pore growth direction). Therefore, lightweight, mechanically flexible, thermally insulating, and hydrophobic PIFs were successfully prepared by the proposed approach, which demonstrate potential applications in the aerospace, transportation, microelectronics, and nuclear energy sectors, among others.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.