Martina Švábová, Marek Šváb, Maryna Vorokhta, Michael Pohořelý
{"title":"活性炭去除人工补水水中微污染物的效果评价","authors":"Martina Švábová, Marek Šváb, Maryna Vorokhta, Michael Pohořelý","doi":"10.1016/j.jhazmat.2025.138504","DOIUrl":null,"url":null,"abstract":"Pilot scale micropollutant removal onto three types of granular activated carbon was tested over a period of 25 months. The columns were operated in a mode as similar as possible to the functioning of the main waterworks with the emphasis on minimizing the washing of the activated carbon layers. Sampling was performed monthly and a total of 222 micropollutants were evaluated. The columns were located at a waterworks in central Bohemia (Czech Republic). Real influent water from the river Jizera after artificial recharge and sand filtration was used. The aim of this study was to verify whether the process of micropollutant removal was suitable under the operating conditions at the waterworks.Clear seasonal patterns of micropollutant concentrations in the influent were detected. All three columns were able to effectively remove or substantially decrease the concentration of most micropollutants. The best performance was shown for the activated carbon Aquasorb 5005, which had the highest surface area and a well developed porous structure with the highest proportion of mesopores. The data were evaluated in order to identify micropollutant parameters important for their removal, and the pH-dependent octanol/water partition coefficient was identified as the key parameter. Other important parameters were charge and polar surface area of the micropollutant molecules.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"95 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of micropollutant removal from artificially recharged water using activated carbon\",\"authors\":\"Martina Švábová, Marek Šváb, Maryna Vorokhta, Michael Pohořelý\",\"doi\":\"10.1016/j.jhazmat.2025.138504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pilot scale micropollutant removal onto three types of granular activated carbon was tested over a period of 25 months. The columns were operated in a mode as similar as possible to the functioning of the main waterworks with the emphasis on minimizing the washing of the activated carbon layers. Sampling was performed monthly and a total of 222 micropollutants were evaluated. The columns were located at a waterworks in central Bohemia (Czech Republic). Real influent water from the river Jizera after artificial recharge and sand filtration was used. The aim of this study was to verify whether the process of micropollutant removal was suitable under the operating conditions at the waterworks.Clear seasonal patterns of micropollutant concentrations in the influent were detected. All three columns were able to effectively remove or substantially decrease the concentration of most micropollutants. The best performance was shown for the activated carbon Aquasorb 5005, which had the highest surface area and a well developed porous structure with the highest proportion of mesopores. The data were evaluated in order to identify micropollutant parameters important for their removal, and the pH-dependent octanol/water partition coefficient was identified as the key parameter. Other important parameters were charge and polar surface area of the micropollutant molecules.\",\"PeriodicalId\":361,\"journal\":{\"name\":\"Journal of Hazardous Materials\",\"volume\":\"95 1\",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hazardous Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jhazmat.2025.138504\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.138504","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Evaluation of micropollutant removal from artificially recharged water using activated carbon
Pilot scale micropollutant removal onto three types of granular activated carbon was tested over a period of 25 months. The columns were operated in a mode as similar as possible to the functioning of the main waterworks with the emphasis on minimizing the washing of the activated carbon layers. Sampling was performed monthly and a total of 222 micropollutants were evaluated. The columns were located at a waterworks in central Bohemia (Czech Republic). Real influent water from the river Jizera after artificial recharge and sand filtration was used. The aim of this study was to verify whether the process of micropollutant removal was suitable under the operating conditions at the waterworks.Clear seasonal patterns of micropollutant concentrations in the influent were detected. All three columns were able to effectively remove or substantially decrease the concentration of most micropollutants. The best performance was shown for the activated carbon Aquasorb 5005, which had the highest surface area and a well developed porous structure with the highest proportion of mesopores. The data were evaluated in order to identify micropollutant parameters important for their removal, and the pH-dependent octanol/water partition coefficient was identified as the key parameter. Other important parameters were charge and polar surface area of the micropollutant molecules.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.