Mark Waterhouse,Kyren Lazarus,Maria Francesca Santolla,Sara Pensa,Eleanor Williams,Abigail J Q Siu,Hisham Mohammed,Irina Mohorianu,Marcello Maggiolini,Jason Carroll,Laura S Itzhaki,Taufiq Rahman,Walid T Khaled
{"title":"CHD8与BCL11A相互作用诱导三阴性乳腺癌的致癌转录。","authors":"Mark Waterhouse,Kyren Lazarus,Maria Francesca Santolla,Sara Pensa,Eleanor Williams,Abigail J Q Siu,Hisham Mohammed,Irina Mohorianu,Marcello Maggiolini,Jason Carroll,Laura S Itzhaki,Taufiq Rahman,Walid T Khaled","doi":"10.1038/s44318-025-00447-8","DOIUrl":null,"url":null,"abstract":"The identification of tumour-specific protein-protein interactions remains a challenge for the development of targeted cancer therapies. In this study we describe our approach for the identification of triple negative breast cancer (TNBC)-specific protein-protein interactions focusing on the oncogene BCL11A. We used a proteomic approach to identify the BCL11A protein networks in TNBC and compared it to its network in B-cells, a cell type in which BCL11A plays crucial roles. This approach identified the chromatin remodeller CHD8 as a TNBC-specific interaction partner of BCL11A. We show that CHD8 also plays a key role in TNBC pathogenesis, with detailed multi-omics analysis revealing that BCL11A and CHD8 co-regulate several targets and synergise to drive tumour development and progression. Using a battery of biophysical assays, we confirm that the BCL11A-CHD8 interaction is direct and identify chemical fragments that disrupt this interaction and affect downstream targets, decreasing proliferation in 3D colony assays. Our study provides a proof-of-principle approach for investigating tumour-specific protein-protein interactions and identifies lead chemical compounds that could be developed into novel therapeutics for TNBC.","PeriodicalId":501009,"journal":{"name":"The EMBO Journal","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CHD8 interacts with BCL11A to induce oncogenic transcription in triple negative breast cancer.\",\"authors\":\"Mark Waterhouse,Kyren Lazarus,Maria Francesca Santolla,Sara Pensa,Eleanor Williams,Abigail J Q Siu,Hisham Mohammed,Irina Mohorianu,Marcello Maggiolini,Jason Carroll,Laura S Itzhaki,Taufiq Rahman,Walid T Khaled\",\"doi\":\"10.1038/s44318-025-00447-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The identification of tumour-specific protein-protein interactions remains a challenge for the development of targeted cancer therapies. In this study we describe our approach for the identification of triple negative breast cancer (TNBC)-specific protein-protein interactions focusing on the oncogene BCL11A. We used a proteomic approach to identify the BCL11A protein networks in TNBC and compared it to its network in B-cells, a cell type in which BCL11A plays crucial roles. This approach identified the chromatin remodeller CHD8 as a TNBC-specific interaction partner of BCL11A. We show that CHD8 also plays a key role in TNBC pathogenesis, with detailed multi-omics analysis revealing that BCL11A and CHD8 co-regulate several targets and synergise to drive tumour development and progression. Using a battery of biophysical assays, we confirm that the BCL11A-CHD8 interaction is direct and identify chemical fragments that disrupt this interaction and affect downstream targets, decreasing proliferation in 3D colony assays. Our study provides a proof-of-principle approach for investigating tumour-specific protein-protein interactions and identifies lead chemical compounds that could be developed into novel therapeutics for TNBC.\",\"PeriodicalId\":501009,\"journal\":{\"name\":\"The EMBO Journal\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The EMBO Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44318-025-00447-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The EMBO Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44318-025-00447-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CHD8 interacts with BCL11A to induce oncogenic transcription in triple negative breast cancer.
The identification of tumour-specific protein-protein interactions remains a challenge for the development of targeted cancer therapies. In this study we describe our approach for the identification of triple negative breast cancer (TNBC)-specific protein-protein interactions focusing on the oncogene BCL11A. We used a proteomic approach to identify the BCL11A protein networks in TNBC and compared it to its network in B-cells, a cell type in which BCL11A plays crucial roles. This approach identified the chromatin remodeller CHD8 as a TNBC-specific interaction partner of BCL11A. We show that CHD8 also plays a key role in TNBC pathogenesis, with detailed multi-omics analysis revealing that BCL11A and CHD8 co-regulate several targets and synergise to drive tumour development and progression. Using a battery of biophysical assays, we confirm that the BCL11A-CHD8 interaction is direct and identify chemical fragments that disrupt this interaction and affect downstream targets, decreasing proliferation in 3D colony assays. Our study provides a proof-of-principle approach for investigating tumour-specific protein-protein interactions and identifies lead chemical compounds that could be developed into novel therapeutics for TNBC.