Leilei Peng,Haijun Xiao,Yanghong Xu,Zhihao Huang,Xuan Yang,Chen Lv,Linghui Huang,Jun Hu
{"title":"五肽重复蛋白PPR767调控水稻植株结构和抗旱性。","authors":"Leilei Peng,Haijun Xiao,Yanghong Xu,Zhihao Huang,Xuan Yang,Chen Lv,Linghui Huang,Jun Hu","doi":"10.1093/plphys/kiaf187","DOIUrl":null,"url":null,"abstract":"The RNA-binding proteins (RBPs) encoded by the nucleus are essential for RNA metabolism in eukaryotes. Pentatricopeptide repeat (PPR) proteins, a large subset of RBPs, are essential for plant development and reproduction by participating in organellar RNA processing. Here, we identified an E-type PPR protein, PPR767, which functions in mitochondria. Knocking out PPR767 resulted in decreased plant height, thinner stems, shorter and narrower blades, and consequently affected yield traits compared to those of the wild-type. PPR767 primarily participated in the RNA editing of four sites related to NADH dehydrogenase (Nad), including nad1-674, nad3-155, nad3-172, and nad7-317. PPR767 interacted with multiple organellar RNA editing factors (MORFs), including MORF1 and MORF8, suggesting that the editosome in rice (Oryza sativa) is complex. The mutants showed decreased mitochondrial complex Ⅰ activity and compromised mitochondrial structure. Furthermore, mutation of PPR767 influenced rice drought tolerance and the expression levels of genes involved in reactive oxygen species (ROS) accumulation. Therefore, PPR767 is essential for complex Ⅰ activity by properly regulating the RNA editing efficiency of mitochondrial genes and affects drought tolerance by modulating ROS content in rice. Our findings provide valuable insights into the mechanisms by which PPRs fulfil their functions.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"1 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The pentatricopeptide repeat protein PPR767 modulates plant architecture and drought resistance in rice.\",\"authors\":\"Leilei Peng,Haijun Xiao,Yanghong Xu,Zhihao Huang,Xuan Yang,Chen Lv,Linghui Huang,Jun Hu\",\"doi\":\"10.1093/plphys/kiaf187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The RNA-binding proteins (RBPs) encoded by the nucleus are essential for RNA metabolism in eukaryotes. Pentatricopeptide repeat (PPR) proteins, a large subset of RBPs, are essential for plant development and reproduction by participating in organellar RNA processing. Here, we identified an E-type PPR protein, PPR767, which functions in mitochondria. Knocking out PPR767 resulted in decreased plant height, thinner stems, shorter and narrower blades, and consequently affected yield traits compared to those of the wild-type. PPR767 primarily participated in the RNA editing of four sites related to NADH dehydrogenase (Nad), including nad1-674, nad3-155, nad3-172, and nad7-317. PPR767 interacted with multiple organellar RNA editing factors (MORFs), including MORF1 and MORF8, suggesting that the editosome in rice (Oryza sativa) is complex. The mutants showed decreased mitochondrial complex Ⅰ activity and compromised mitochondrial structure. Furthermore, mutation of PPR767 influenced rice drought tolerance and the expression levels of genes involved in reactive oxygen species (ROS) accumulation. Therefore, PPR767 is essential for complex Ⅰ activity by properly regulating the RNA editing efficiency of mitochondrial genes and affects drought tolerance by modulating ROS content in rice. Our findings provide valuable insights into the mechanisms by which PPRs fulfil their functions.\",\"PeriodicalId\":20101,\"journal\":{\"name\":\"Plant Physiology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/plphys/kiaf187\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiaf187","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
The pentatricopeptide repeat protein PPR767 modulates plant architecture and drought resistance in rice.
The RNA-binding proteins (RBPs) encoded by the nucleus are essential for RNA metabolism in eukaryotes. Pentatricopeptide repeat (PPR) proteins, a large subset of RBPs, are essential for plant development and reproduction by participating in organellar RNA processing. Here, we identified an E-type PPR protein, PPR767, which functions in mitochondria. Knocking out PPR767 resulted in decreased plant height, thinner stems, shorter and narrower blades, and consequently affected yield traits compared to those of the wild-type. PPR767 primarily participated in the RNA editing of four sites related to NADH dehydrogenase (Nad), including nad1-674, nad3-155, nad3-172, and nad7-317. PPR767 interacted with multiple organellar RNA editing factors (MORFs), including MORF1 and MORF8, suggesting that the editosome in rice (Oryza sativa) is complex. The mutants showed decreased mitochondrial complex Ⅰ activity and compromised mitochondrial structure. Furthermore, mutation of PPR767 influenced rice drought tolerance and the expression levels of genes involved in reactive oxygen species (ROS) accumulation. Therefore, PPR767 is essential for complex Ⅰ activity by properly regulating the RNA editing efficiency of mitochondrial genes and affects drought tolerance by modulating ROS content in rice. Our findings provide valuable insights into the mechanisms by which PPRs fulfil their functions.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.