{"title":"光生载流子在浅阱态保护下在钙钛矿中存活毫秒。","authors":"Hao-Yi Wang,Xinli Wang,Jie Gao,Jiyuan Wu,Yi Wang,Li-Min Fu,Xi-Cheng Ai,Jian-Ping Zhang","doi":"10.1021/acs.jpclett.5c00901","DOIUrl":null,"url":null,"abstract":"The performance of perovskite-based photovoltaic and light-emitting devices is susceptive to the interaction between charge carriers and trap states. The inherent trap state tolerance endows perovskite with a series of unprecedented properties; however, the underlying mechanisms remain poorly explored. Herein, we show, with a novel time-resolved stimulated emission spectroscopy approach, that photogenerated carriers are effectively prevented from internal nonradiative recombination and external luminescence quenching by shallow trap states. The photogenerated carriers survive for a period of >3 ms, 4 orders of magnitude longer than the submicrosecond photoluminescence lifetime. The surprisingly long-lived charge carriers can be quantitatively accounted for by a proposed model of trap state-assisted carrier protection (TSACP), which is consolidated by the results of confirmatory experiments on perovskites with varying chemical compositions and micronano structures. These findings shed light on the mechanism of carrier-trap state interaction, which will benefit for more effective defect engineering of perovskite materials and devices.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"47 1","pages":"4748-4753"},"PeriodicalIF":4.8000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photogenerated Carriers Surviving for Milliseconds in Perovskites under the Protection of Shallow Trap States.\",\"authors\":\"Hao-Yi Wang,Xinli Wang,Jie Gao,Jiyuan Wu,Yi Wang,Li-Min Fu,Xi-Cheng Ai,Jian-Ping Zhang\",\"doi\":\"10.1021/acs.jpclett.5c00901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of perovskite-based photovoltaic and light-emitting devices is susceptive to the interaction between charge carriers and trap states. The inherent trap state tolerance endows perovskite with a series of unprecedented properties; however, the underlying mechanisms remain poorly explored. Herein, we show, with a novel time-resolved stimulated emission spectroscopy approach, that photogenerated carriers are effectively prevented from internal nonradiative recombination and external luminescence quenching by shallow trap states. The photogenerated carriers survive for a period of >3 ms, 4 orders of magnitude longer than the submicrosecond photoluminescence lifetime. The surprisingly long-lived charge carriers can be quantitatively accounted for by a proposed model of trap state-assisted carrier protection (TSACP), which is consolidated by the results of confirmatory experiments on perovskites with varying chemical compositions and micronano structures. These findings shed light on the mechanism of carrier-trap state interaction, which will benefit for more effective defect engineering of perovskite materials and devices.\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"47 1\",\"pages\":\"4748-4753\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpclett.5c00901\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.5c00901","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Photogenerated Carriers Surviving for Milliseconds in Perovskites under the Protection of Shallow Trap States.
The performance of perovskite-based photovoltaic and light-emitting devices is susceptive to the interaction between charge carriers and trap states. The inherent trap state tolerance endows perovskite with a series of unprecedented properties; however, the underlying mechanisms remain poorly explored. Herein, we show, with a novel time-resolved stimulated emission spectroscopy approach, that photogenerated carriers are effectively prevented from internal nonradiative recombination and external luminescence quenching by shallow trap states. The photogenerated carriers survive for a period of >3 ms, 4 orders of magnitude longer than the submicrosecond photoluminescence lifetime. The surprisingly long-lived charge carriers can be quantitatively accounted for by a proposed model of trap state-assisted carrier protection (TSACP), which is consolidated by the results of confirmatory experiments on perovskites with varying chemical compositions and micronano structures. These findings shed light on the mechanism of carrier-trap state interaction, which will benefit for more effective defect engineering of perovskite materials and devices.
期刊介绍:
The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.