{"title":"基于离散-连续耦合方法的粘性土质边坡失稳机理","authors":"Yuqi Li, Yuting Jing, Zhaoyu Yang","doi":"10.1002/gj.5088","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This paper employed PFC<sup>3D</sup> and FLAC<sup>3D</sup> to conduct a three-dimensional discrete-continuous dual-scale coupled simulation and stability analysis of cohesive soil slope through discrete-continuous coupled algorithm and the gravity increase method. In the discrete element model zone, the progressive failure process of cohesive soil slope was studied by setting particles with different displacements to different colours, the evolutions of porosity and coordination number in the shear, sliding and stability zones of slope were analysed by arranging measurement spheres, and the variation law of particle position was obtained by the vertical layering of the soil. In the continuous model zone of coupled slope model, the horizontal and vertical stresses were verified with those of a pure FLAC<sup>3D</sup> model of slope. Furthermore, a comparative instability analysis of cohesive soil slope and gravelly soil slope was also performed. The safety factor for the cohesive soil slope in this work was determined to be 1.7 according to the mesoscopic fabric evolution of slope particles and the gravity increase method. The work in this paper broadens the application scope of the dual-scale coupled algorithm, highlights the differences in the mesoscopic instability mechanism between cohesive soil slop and gravelly soil slop, and provides new theoretical support for slope design and risk assessment in engineering practice.</p>\n </div>","PeriodicalId":12784,"journal":{"name":"Geological Journal","volume":"60 5","pages":"1093-1105"},"PeriodicalIF":1.4000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Instability Mechanism of Cohesive Soil Slope Based on Discrete-Continuous Coupled Method\",\"authors\":\"Yuqi Li, Yuting Jing, Zhaoyu Yang\",\"doi\":\"10.1002/gj.5088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>This paper employed PFC<sup>3D</sup> and FLAC<sup>3D</sup> to conduct a three-dimensional discrete-continuous dual-scale coupled simulation and stability analysis of cohesive soil slope through discrete-continuous coupled algorithm and the gravity increase method. In the discrete element model zone, the progressive failure process of cohesive soil slope was studied by setting particles with different displacements to different colours, the evolutions of porosity and coordination number in the shear, sliding and stability zones of slope were analysed by arranging measurement spheres, and the variation law of particle position was obtained by the vertical layering of the soil. In the continuous model zone of coupled slope model, the horizontal and vertical stresses were verified with those of a pure FLAC<sup>3D</sup> model of slope. Furthermore, a comparative instability analysis of cohesive soil slope and gravelly soil slope was also performed. The safety factor for the cohesive soil slope in this work was determined to be 1.7 according to the mesoscopic fabric evolution of slope particles and the gravity increase method. The work in this paper broadens the application scope of the dual-scale coupled algorithm, highlights the differences in the mesoscopic instability mechanism between cohesive soil slop and gravelly soil slop, and provides new theoretical support for slope design and risk assessment in engineering practice.</p>\\n </div>\",\"PeriodicalId\":12784,\"journal\":{\"name\":\"Geological Journal\",\"volume\":\"60 5\",\"pages\":\"1093-1105\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geological Journal\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gj.5088\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geological Journal","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gj.5088","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Instability Mechanism of Cohesive Soil Slope Based on Discrete-Continuous Coupled Method
This paper employed PFC3D and FLAC3D to conduct a three-dimensional discrete-continuous dual-scale coupled simulation and stability analysis of cohesive soil slope through discrete-continuous coupled algorithm and the gravity increase method. In the discrete element model zone, the progressive failure process of cohesive soil slope was studied by setting particles with different displacements to different colours, the evolutions of porosity and coordination number in the shear, sliding and stability zones of slope were analysed by arranging measurement spheres, and the variation law of particle position was obtained by the vertical layering of the soil. In the continuous model zone of coupled slope model, the horizontal and vertical stresses were verified with those of a pure FLAC3D model of slope. Furthermore, a comparative instability analysis of cohesive soil slope and gravelly soil slope was also performed. The safety factor for the cohesive soil slope in this work was determined to be 1.7 according to the mesoscopic fabric evolution of slope particles and the gravity increase method. The work in this paper broadens the application scope of the dual-scale coupled algorithm, highlights the differences in the mesoscopic instability mechanism between cohesive soil slop and gravelly soil slop, and provides new theoretical support for slope design and risk assessment in engineering practice.
期刊介绍:
In recent years there has been a growth of specialist journals within geological sciences. Nevertheless, there is an important role for a journal of an interdisciplinary kind. Traditionally, GEOLOGICAL JOURNAL has been such a journal and continues in its aim of promoting interest in all branches of the Geological Sciences, through publication of original research papers and review articles. The journal publishes Special Issues with a common theme or regional coverage e.g. Chinese Dinosaurs; Tectonics of the Eastern Mediterranean, Triassic basins of the Central and North Atlantic Borderlands). These are extensively cited.
The Journal has a particular interest in publishing papers on regional case studies from any global locality which have conclusions of general interest. Such papers may emphasize aspects across the full spectrum of geological sciences.