{"title":"推进地质灾害监测:孟加拉国北部和中部地面沉降的Sentinel-1 InSAR观测","authors":"Gavin D. Middleton, Nahid D. Gani, M. Royhan Gani","doi":"10.1002/gj.5206","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Bangladesh in the Bengal Delta faces complex environmental issues, including sea-level rise, coastal flooding, high population density, and widespread poverty. These factors lead to severe land loss, saltwater intrusion, water scarcity, and biodiversity decline, further exacerbated by climate change. These challenges significantly risk groundwater availability and increase the likelihood of natural hazards such as subsidence, landslides, and flooding. This study quantitatively maps the spatial distribution of subsidence in urban and agricultural settings by utilising Differential Interferometric Synthetic Aperture Radar (DInSAR) and Persistent Scatter Interferometric Synthetic Aperture Radar (PSI) techniques with ascending Sentinel-1 satellite data. We analysed 55 pairs of images with DInSAR and 142 pairs with PSI from March 2017 to October 2022, focusing on five target locations for DInSAR and urban Dhaka for PSI. Findings reveal consistent subsidence in urban Dhaka at an average rate of 16 mm/year, along with semi-seasonal subsidence variability in five agricultural locations. Specific rates are 7 mm/year in Dhaka, 8 mm/year in both Rajshahi and Mymensingh, and 9 mm/year in Rangpur. Sylhet subsides at a rate of 5 mm/year, potentially linked to the fold and thrust belt and the Dauki Fault. Our research highlights the significant environmental impacts of human activities like groundwater withdrawal and land-use changes, which contribute to subsidence and groundwater depletion via the Bengal Water Machine. While further study is required to comprehensively understand the relationship between LOS indicated subsidence rates, geological factors, and geomorphological changes, our findings offer crucial insights into the current impacts of climate change and ongoing environmental degradation in the region.</p>\n </div>","PeriodicalId":12784,"journal":{"name":"Geological Journal","volume":"60 5","pages":"1106-1128"},"PeriodicalIF":1.4000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing Geohazard Monitoring: Sentinel-1 InSAR Observations of Land Subsidence in Northern and Central Bangladesh\",\"authors\":\"Gavin D. Middleton, Nahid D. Gani, M. Royhan Gani\",\"doi\":\"10.1002/gj.5206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Bangladesh in the Bengal Delta faces complex environmental issues, including sea-level rise, coastal flooding, high population density, and widespread poverty. These factors lead to severe land loss, saltwater intrusion, water scarcity, and biodiversity decline, further exacerbated by climate change. These challenges significantly risk groundwater availability and increase the likelihood of natural hazards such as subsidence, landslides, and flooding. This study quantitatively maps the spatial distribution of subsidence in urban and agricultural settings by utilising Differential Interferometric Synthetic Aperture Radar (DInSAR) and Persistent Scatter Interferometric Synthetic Aperture Radar (PSI) techniques with ascending Sentinel-1 satellite data. We analysed 55 pairs of images with DInSAR and 142 pairs with PSI from March 2017 to October 2022, focusing on five target locations for DInSAR and urban Dhaka for PSI. Findings reveal consistent subsidence in urban Dhaka at an average rate of 16 mm/year, along with semi-seasonal subsidence variability in five agricultural locations. Specific rates are 7 mm/year in Dhaka, 8 mm/year in both Rajshahi and Mymensingh, and 9 mm/year in Rangpur. Sylhet subsides at a rate of 5 mm/year, potentially linked to the fold and thrust belt and the Dauki Fault. Our research highlights the significant environmental impacts of human activities like groundwater withdrawal and land-use changes, which contribute to subsidence and groundwater depletion via the Bengal Water Machine. While further study is required to comprehensively understand the relationship between LOS indicated subsidence rates, geological factors, and geomorphological changes, our findings offer crucial insights into the current impacts of climate change and ongoing environmental degradation in the region.</p>\\n </div>\",\"PeriodicalId\":12784,\"journal\":{\"name\":\"Geological Journal\",\"volume\":\"60 5\",\"pages\":\"1106-1128\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geological Journal\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gj.5206\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geological Journal","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gj.5206","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Advancing Geohazard Monitoring: Sentinel-1 InSAR Observations of Land Subsidence in Northern and Central Bangladesh
Bangladesh in the Bengal Delta faces complex environmental issues, including sea-level rise, coastal flooding, high population density, and widespread poverty. These factors lead to severe land loss, saltwater intrusion, water scarcity, and biodiversity decline, further exacerbated by climate change. These challenges significantly risk groundwater availability and increase the likelihood of natural hazards such as subsidence, landslides, and flooding. This study quantitatively maps the spatial distribution of subsidence in urban and agricultural settings by utilising Differential Interferometric Synthetic Aperture Radar (DInSAR) and Persistent Scatter Interferometric Synthetic Aperture Radar (PSI) techniques with ascending Sentinel-1 satellite data. We analysed 55 pairs of images with DInSAR and 142 pairs with PSI from March 2017 to October 2022, focusing on five target locations for DInSAR and urban Dhaka for PSI. Findings reveal consistent subsidence in urban Dhaka at an average rate of 16 mm/year, along with semi-seasonal subsidence variability in five agricultural locations. Specific rates are 7 mm/year in Dhaka, 8 mm/year in both Rajshahi and Mymensingh, and 9 mm/year in Rangpur. Sylhet subsides at a rate of 5 mm/year, potentially linked to the fold and thrust belt and the Dauki Fault. Our research highlights the significant environmental impacts of human activities like groundwater withdrawal and land-use changes, which contribute to subsidence and groundwater depletion via the Bengal Water Machine. While further study is required to comprehensively understand the relationship between LOS indicated subsidence rates, geological factors, and geomorphological changes, our findings offer crucial insights into the current impacts of climate change and ongoing environmental degradation in the region.
期刊介绍:
In recent years there has been a growth of specialist journals within geological sciences. Nevertheless, there is an important role for a journal of an interdisciplinary kind. Traditionally, GEOLOGICAL JOURNAL has been such a journal and continues in its aim of promoting interest in all branches of the Geological Sciences, through publication of original research papers and review articles. The journal publishes Special Issues with a common theme or regional coverage e.g. Chinese Dinosaurs; Tectonics of the Eastern Mediterranean, Triassic basins of the Central and North Atlantic Borderlands). These are extensively cited.
The Journal has a particular interest in publishing papers on regional case studies from any global locality which have conclusions of general interest. Such papers may emphasize aspects across the full spectrum of geological sciences.