{"title":"利用机器学习方法增强印度锡金滑坡易感性制图","authors":"Sujit Kumar Roy, Sumon Dey, Jayanta Das, Billal Hossen, Swarup Das, Md. Mahmudul Hasan, Pratik Mojumder","doi":"10.1002/gj.5198","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Landslides pose significant hazards in the mountainous region of Sikkim, India, necessitating accurate susceptibility mapping to mitigate risks. This study applies four machine learning models: Boosted Tree (BT), Gradient Boosting Machine (GBM), K-Nearest Neighbour (KNN), and Multilayer Perceptron (MLP) to develop a detailed landslide susceptibility map. Feature selection was performed using correlation analysis, the Boruta model, and multicollinearity tests, which identified 13 key landslide conditioning factors based on 1456 landslide inventory points. The GBM model demonstrated the highest predictive performance with an AUC of 0.99, followed by BT (AUC: 0.965), MLP (AUC: 0.940), and KNN (AUC: 0.895) in the testing dataset. The confusion matrix validation confirmed that GBM outperformed other models, achieving the highest F1 score (0.894) and accuracy (89.4%), followed by BT with an F1 score of 0.874 and accuracy of 87.8%. KNN and MLP displayed lower performance, with KNN showing an F1 score of 0.724 and accuracy of 72.6%, and MLP significantly underperforming with an F1 score of 0.096 and accuracy of 48.6%. Statistical significance testing using the Wilcoxon Signed-Rank Test revealed significant differences between BT and MLP (<i>p</i> = 0.018), while other model pairs exhibited no statistically significant performance differences. Additionally, the variable importance analysis highlighted Diurnal Temperature Range (DTR) as the most critical factor influencing landslide occurrence (43.99%), followed by elevation (21.59%). These findings provide valuable insights for policymakers and government authorities, enabling them to take necessary measures for effective landslide management in the vulnerable areas of Sikkim, confirming the efficacy of machine learning models for geohazard assessments.</p>\n </div>","PeriodicalId":12784,"journal":{"name":"Geological Journal","volume":"60 5","pages":"1150-1169"},"PeriodicalIF":1.4000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilising Machine Learning Approaches for Enhanced Landslide Susceptibility Mapping in Sikkim, India\",\"authors\":\"Sujit Kumar Roy, Sumon Dey, Jayanta Das, Billal Hossen, Swarup Das, Md. Mahmudul Hasan, Pratik Mojumder\",\"doi\":\"10.1002/gj.5198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Landslides pose significant hazards in the mountainous region of Sikkim, India, necessitating accurate susceptibility mapping to mitigate risks. This study applies four machine learning models: Boosted Tree (BT), Gradient Boosting Machine (GBM), K-Nearest Neighbour (KNN), and Multilayer Perceptron (MLP) to develop a detailed landslide susceptibility map. Feature selection was performed using correlation analysis, the Boruta model, and multicollinearity tests, which identified 13 key landslide conditioning factors based on 1456 landslide inventory points. The GBM model demonstrated the highest predictive performance with an AUC of 0.99, followed by BT (AUC: 0.965), MLP (AUC: 0.940), and KNN (AUC: 0.895) in the testing dataset. The confusion matrix validation confirmed that GBM outperformed other models, achieving the highest F1 score (0.894) and accuracy (89.4%), followed by BT with an F1 score of 0.874 and accuracy of 87.8%. KNN and MLP displayed lower performance, with KNN showing an F1 score of 0.724 and accuracy of 72.6%, and MLP significantly underperforming with an F1 score of 0.096 and accuracy of 48.6%. Statistical significance testing using the Wilcoxon Signed-Rank Test revealed significant differences between BT and MLP (<i>p</i> = 0.018), while other model pairs exhibited no statistically significant performance differences. Additionally, the variable importance analysis highlighted Diurnal Temperature Range (DTR) as the most critical factor influencing landslide occurrence (43.99%), followed by elevation (21.59%). These findings provide valuable insights for policymakers and government authorities, enabling them to take necessary measures for effective landslide management in the vulnerable areas of Sikkim, confirming the efficacy of machine learning models for geohazard assessments.</p>\\n </div>\",\"PeriodicalId\":12784,\"journal\":{\"name\":\"Geological Journal\",\"volume\":\"60 5\",\"pages\":\"1150-1169\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geological Journal\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gj.5198\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geological Journal","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gj.5198","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Utilising Machine Learning Approaches for Enhanced Landslide Susceptibility Mapping in Sikkim, India
Landslides pose significant hazards in the mountainous region of Sikkim, India, necessitating accurate susceptibility mapping to mitigate risks. This study applies four machine learning models: Boosted Tree (BT), Gradient Boosting Machine (GBM), K-Nearest Neighbour (KNN), and Multilayer Perceptron (MLP) to develop a detailed landslide susceptibility map. Feature selection was performed using correlation analysis, the Boruta model, and multicollinearity tests, which identified 13 key landslide conditioning factors based on 1456 landslide inventory points. The GBM model demonstrated the highest predictive performance with an AUC of 0.99, followed by BT (AUC: 0.965), MLP (AUC: 0.940), and KNN (AUC: 0.895) in the testing dataset. The confusion matrix validation confirmed that GBM outperformed other models, achieving the highest F1 score (0.894) and accuracy (89.4%), followed by BT with an F1 score of 0.874 and accuracy of 87.8%. KNN and MLP displayed lower performance, with KNN showing an F1 score of 0.724 and accuracy of 72.6%, and MLP significantly underperforming with an F1 score of 0.096 and accuracy of 48.6%. Statistical significance testing using the Wilcoxon Signed-Rank Test revealed significant differences between BT and MLP (p = 0.018), while other model pairs exhibited no statistically significant performance differences. Additionally, the variable importance analysis highlighted Diurnal Temperature Range (DTR) as the most critical factor influencing landslide occurrence (43.99%), followed by elevation (21.59%). These findings provide valuable insights for policymakers and government authorities, enabling them to take necessary measures for effective landslide management in the vulnerable areas of Sikkim, confirming the efficacy of machine learning models for geohazard assessments.
期刊介绍:
In recent years there has been a growth of specialist journals within geological sciences. Nevertheless, there is an important role for a journal of an interdisciplinary kind. Traditionally, GEOLOGICAL JOURNAL has been such a journal and continues in its aim of promoting interest in all branches of the Geological Sciences, through publication of original research papers and review articles. The journal publishes Special Issues with a common theme or regional coverage e.g. Chinese Dinosaurs; Tectonics of the Eastern Mediterranean, Triassic basins of the Central and North Atlantic Borderlands). These are extensively cited.
The Journal has a particular interest in publishing papers on regional case studies from any global locality which have conclusions of general interest. Such papers may emphasize aspects across the full spectrum of geological sciences.