Lei Chen, Guoqiu Liu, Lei Xian, Bo Zhang, Wen-Quan Tao
{"title":"胡桃钳综合征血流数值模拟:血流动力学参数的获取及临床应用","authors":"Lei Chen, Guoqiu Liu, Lei Xian, Bo Zhang, Wen-Quan Tao","doi":"10.1002/cnm.70031","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Adopting noninvasive techniques to provide more precise parameters related to the clinical diagnosis and treatment of nutcracker syndrome is currently the focus of research on nutcracker syndrome. However, due to individual differences in patients and limitations in monitoring techniques, there is an urgent need for a new method to obtain more accurate parameters. This work is based on imaging data from two patients with nutcracker syndrome and numerically simulates the blood flow process in the left renal vein, revealing different clinical symptoms caused by changes in flow velocity, pressure, and wall shear stress. Besides, this work also compares the dynamic changes of blood flow parameters under two different degrees of compression. The study indicates that an increase in pressure at the entrance of the left renal vein increases the risk of venous congestion. The flow separation reduces the blood flow rate by 50%–60%, causing a series of flow obstacles. The wall shear stress near the compressed area increased by 15–20 times, exacerbating the damage of blood flow to the left renal vein. The increase in the degree of compression exacerbates flow barriers and the impact of blood flow on the vascular wall. This study introduces a method of obtaining hemodynamic parameters through computational fluid dynamics and summarizes the clinical symptoms caused by abnormal changes in different blood flow parameters. This method provides a more reliable approach for the clinical diagnosis of nutcracker syndrome and the optimization design of extracorporeal stent structures since it is not limited by monitoring techniques.</p>\n </div>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":"41 5","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Simulation of Blood Flow in Nutcracker Syndrome: Acquisition of Hemodynamic Parameters and Clinical Application\",\"authors\":\"Lei Chen, Guoqiu Liu, Lei Xian, Bo Zhang, Wen-Quan Tao\",\"doi\":\"10.1002/cnm.70031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Adopting noninvasive techniques to provide more precise parameters related to the clinical diagnosis and treatment of nutcracker syndrome is currently the focus of research on nutcracker syndrome. However, due to individual differences in patients and limitations in monitoring techniques, there is an urgent need for a new method to obtain more accurate parameters. This work is based on imaging data from two patients with nutcracker syndrome and numerically simulates the blood flow process in the left renal vein, revealing different clinical symptoms caused by changes in flow velocity, pressure, and wall shear stress. Besides, this work also compares the dynamic changes of blood flow parameters under two different degrees of compression. The study indicates that an increase in pressure at the entrance of the left renal vein increases the risk of venous congestion. The flow separation reduces the blood flow rate by 50%–60%, causing a series of flow obstacles. The wall shear stress near the compressed area increased by 15–20 times, exacerbating the damage of blood flow to the left renal vein. The increase in the degree of compression exacerbates flow barriers and the impact of blood flow on the vascular wall. This study introduces a method of obtaining hemodynamic parameters through computational fluid dynamics and summarizes the clinical symptoms caused by abnormal changes in different blood flow parameters. This method provides a more reliable approach for the clinical diagnosis of nutcracker syndrome and the optimization design of extracorporeal stent structures since it is not limited by monitoring techniques.</p>\\n </div>\",\"PeriodicalId\":50349,\"journal\":{\"name\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"volume\":\"41 5\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnm.70031\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnm.70031","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Numerical Simulation of Blood Flow in Nutcracker Syndrome: Acquisition of Hemodynamic Parameters and Clinical Application
Adopting noninvasive techniques to provide more precise parameters related to the clinical diagnosis and treatment of nutcracker syndrome is currently the focus of research on nutcracker syndrome. However, due to individual differences in patients and limitations in monitoring techniques, there is an urgent need for a new method to obtain more accurate parameters. This work is based on imaging data from two patients with nutcracker syndrome and numerically simulates the blood flow process in the left renal vein, revealing different clinical symptoms caused by changes in flow velocity, pressure, and wall shear stress. Besides, this work also compares the dynamic changes of blood flow parameters under two different degrees of compression. The study indicates that an increase in pressure at the entrance of the left renal vein increases the risk of venous congestion. The flow separation reduces the blood flow rate by 50%–60%, causing a series of flow obstacles. The wall shear stress near the compressed area increased by 15–20 times, exacerbating the damage of blood flow to the left renal vein. The increase in the degree of compression exacerbates flow barriers and the impact of blood flow on the vascular wall. This study introduces a method of obtaining hemodynamic parameters through computational fluid dynamics and summarizes the clinical symptoms caused by abnormal changes in different blood flow parameters. This method provides a more reliable approach for the clinical diagnosis of nutcracker syndrome and the optimization design of extracorporeal stent structures since it is not limited by monitoring techniques.
期刊介绍:
All differential equation based models for biomedical applications and their novel solutions (using either established numerical methods such as finite difference, finite element and finite volume methods or new numerical methods) are within the scope of this journal. Manuscripts with experimental and analytical themes are also welcome if a component of the paper deals with numerical methods. Special cases that may not involve differential equations such as image processing, meshing and artificial intelligence are within the scope. Any research that is broadly linked to the wellbeing of the human body, either directly or indirectly, is also within the scope of this journal.