Shuai Zhang, Ao Yang, Pan He, Yi Lu, Guangzhao Li, Jiajia Ye, Yumin Huang, Rui Han
{"title":"预聚合对邻苯二腈树脂/玄武岩纤维复合材料结构和性能影响的探讨","authors":"Shuai Zhang, Ao Yang, Pan He, Yi Lu, Guangzhao Li, Jiajia Ye, Yumin Huang, Rui Han","doi":"10.1002/app.56976","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Prepolymerization is a common procedure in the practical application of high-performance composites based on thermosetting resins, but very few reports studied the effects of prepolymerization on the curing reactivity, the chemical structure, and the properties of the final composites. Therefore, in this work, a phthalonitrile resin with a benzoxazine moiety was selected for prepolymerization and for preparing composites with basalt fiber cloth. It was revealed that the molecular weight increased slightly after prepolymerization, consuming a small number of functional groups and releasing groups with catalytic activity. Consequently, the curing reactivity of the prepolymers increased and then decreased; the toughness and strength increased, but the thermal properties increased and then decreased after prepolymerization. All of the variations resulted from the combined function of generated active groups and decreased molecular mobility; that is, more active groups such as phenolic hydroxyls were released after prepolymerization, but the molecular weight was increased, and functional groups were consumed, which led to difficulty in the motion of the resin melt and the crosslinking reaction.</p>\n </div>","PeriodicalId":183,"journal":{"name":"Journal of Applied Polymer Science","volume":"142 23","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probing the Effect of Prepolymerization on the Structure and Properties of Phthalonitrile Resin/Basalt Fiber Composites\",\"authors\":\"Shuai Zhang, Ao Yang, Pan He, Yi Lu, Guangzhao Li, Jiajia Ye, Yumin Huang, Rui Han\",\"doi\":\"10.1002/app.56976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Prepolymerization is a common procedure in the practical application of high-performance composites based on thermosetting resins, but very few reports studied the effects of prepolymerization on the curing reactivity, the chemical structure, and the properties of the final composites. Therefore, in this work, a phthalonitrile resin with a benzoxazine moiety was selected for prepolymerization and for preparing composites with basalt fiber cloth. It was revealed that the molecular weight increased slightly after prepolymerization, consuming a small number of functional groups and releasing groups with catalytic activity. Consequently, the curing reactivity of the prepolymers increased and then decreased; the toughness and strength increased, but the thermal properties increased and then decreased after prepolymerization. All of the variations resulted from the combined function of generated active groups and decreased molecular mobility; that is, more active groups such as phenolic hydroxyls were released after prepolymerization, but the molecular weight was increased, and functional groups were consumed, which led to difficulty in the motion of the resin melt and the crosslinking reaction.</p>\\n </div>\",\"PeriodicalId\":183,\"journal\":{\"name\":\"Journal of Applied Polymer Science\",\"volume\":\"142 23\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/app.56976\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/app.56976","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Probing the Effect of Prepolymerization on the Structure and Properties of Phthalonitrile Resin/Basalt Fiber Composites
Prepolymerization is a common procedure in the practical application of high-performance composites based on thermosetting resins, but very few reports studied the effects of prepolymerization on the curing reactivity, the chemical structure, and the properties of the final composites. Therefore, in this work, a phthalonitrile resin with a benzoxazine moiety was selected for prepolymerization and for preparing composites with basalt fiber cloth. It was revealed that the molecular weight increased slightly after prepolymerization, consuming a small number of functional groups and releasing groups with catalytic activity. Consequently, the curing reactivity of the prepolymers increased and then decreased; the toughness and strength increased, but the thermal properties increased and then decreased after prepolymerization. All of the variations resulted from the combined function of generated active groups and decreased molecular mobility; that is, more active groups such as phenolic hydroxyls were released after prepolymerization, but the molecular weight was increased, and functional groups were consumed, which led to difficulty in the motion of the resin melt and the crosslinking reaction.
期刊介绍:
The Journal of Applied Polymer Science is the largest peer-reviewed publication in polymers, #3 by total citations, and features results with real-world impact on membranes, polysaccharides, and much more.