磁组构确定的图峡玄武岩岩浆在纪念碑堤群中的水平运移

IF 2.9 2区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Margaret S. Avery, Anthony F. Pivarunas
{"title":"磁组构确定的图峡玄武岩岩浆在纪念碑堤群中的水平运移","authors":"Margaret S. Avery,&nbsp;Anthony F. Pivarunas","doi":"10.1029/2024GC012078","DOIUrl":null,"url":null,"abstract":"<p>Flood basalts of the mid-Miocene Columbia River Basalt Group (CRBG) cover 210,000 km<sup>2</sup> of Washington, Oregon, and Idaho. The source of CRBG melt is debated; widely spaced feeder dike swarms can be projected toward hypothetical sources near the Oregon-Idaho border. In this study, we use anisotropy of magnetic susceptibility (AMS) to track magma flow in the Monument dike swarm (MDS), the feeder dikes of the Picture Gorge Basalt (PGB). This small formation of the main-phase CRBG eruptions allows us to explore in detail the localized dynamics of a large igneous province feeder system, with implications for the larger CRBG picture. We measured the magnetic fabric of 205 oriented paleomagnetic specimens subsampled from 97 samples collected from 15 dikes of the MDS. Thermal demagnetization and hysteresis loops show that the magnetic minerals are a mixture of single domain and multidomain sized titanomagnetites. At three dikes, the paleodepth of sampling was determined to be shallow (&lt;350 m). Magma flowing through dikes has been shown—in most cases— to acquire an anisotropic magnetic fabric with an AMS ellipsoid minimum axis perpendicular to the wall and maximum axis aligned in the direction of flow. Of 15 dikes, 12 show horizontal flow directions in the plane of the dike. Only one dike displayed imbricated fabrics, showing westward flow away from the Oregon-Idaho border. We conclude that magma flow in the MDS was sub-horizontal from a distal source.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"26 5","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC012078","citationCount":"0","resultStr":"{\"title\":\"Horizontal Transport of Picture Gorge Basalt Magma Through the Monument Dike Swarm Determined by Magnetic Fabric\",\"authors\":\"Margaret S. Avery,&nbsp;Anthony F. Pivarunas\",\"doi\":\"10.1029/2024GC012078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Flood basalts of the mid-Miocene Columbia River Basalt Group (CRBG) cover 210,000 km<sup>2</sup> of Washington, Oregon, and Idaho. The source of CRBG melt is debated; widely spaced feeder dike swarms can be projected toward hypothetical sources near the Oregon-Idaho border. In this study, we use anisotropy of magnetic susceptibility (AMS) to track magma flow in the Monument dike swarm (MDS), the feeder dikes of the Picture Gorge Basalt (PGB). This small formation of the main-phase CRBG eruptions allows us to explore in detail the localized dynamics of a large igneous province feeder system, with implications for the larger CRBG picture. We measured the magnetic fabric of 205 oriented paleomagnetic specimens subsampled from 97 samples collected from 15 dikes of the MDS. Thermal demagnetization and hysteresis loops show that the magnetic minerals are a mixture of single domain and multidomain sized titanomagnetites. At three dikes, the paleodepth of sampling was determined to be shallow (&lt;350 m). Magma flowing through dikes has been shown—in most cases— to acquire an anisotropic magnetic fabric with an AMS ellipsoid minimum axis perpendicular to the wall and maximum axis aligned in the direction of flow. Of 15 dikes, 12 show horizontal flow directions in the plane of the dike. Only one dike displayed imbricated fabrics, showing westward flow away from the Oregon-Idaho border. We conclude that magma flow in the MDS was sub-horizontal from a distal source.</p>\",\"PeriodicalId\":50422,\"journal\":{\"name\":\"Geochemistry Geophysics Geosystems\",\"volume\":\"26 5\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC012078\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochemistry Geophysics Geosystems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GC012078\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GC012078","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

中新世中期哥伦比亚河玄武岩群(CRBG)的洪水玄武岩覆盖了华盛顿州、俄勒冈州和爱达荷州的210,000平方公里。CRBG熔体的来源存在争议;宽间距的馈线堤群可以投射到俄勒冈州和爱达荷州边界附近的假想来源。本研究利用磁导率各向异性(AMS)跟踪了Picture Gorge玄武岩(PGB)馈线脉群Monument脉群(MDS)中的岩浆流动。这种主要阶段CRBG喷发的小形成使我们能够详细探索大型火成岩省支线系统的局部动力学,并对更大的CRBG图像产生影响。我们从MDS的15个岩脉中采集了97个样品,对205个定向古磁样品进行了磁结构测量。热退磁和磁滞回线表明,磁性矿物为单畴和多畴大小的钛磁铁矿混合。在三个堤防处,确定了古采样深度较浅(<350 m)。在大多数情况下,流经岩脉的岩浆呈现出一种各向异性的磁性结构,其AMS椭球的最小轴与岩壁垂直,最大轴与流动方向一致。15条堤防中,12条在堤防平面上显示水平流向。只有一个堤坝显示出瓦状结构,显示出从俄勒冈州和爱达荷州边界向西流动。我们认为MDS岩浆流是来自远源的亚水平岩浆流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Horizontal Transport of Picture Gorge Basalt Magma Through the Monument Dike Swarm Determined by Magnetic Fabric

Horizontal Transport of Picture Gorge Basalt Magma Through the Monument Dike Swarm Determined by Magnetic Fabric

Flood basalts of the mid-Miocene Columbia River Basalt Group (CRBG) cover 210,000 km2 of Washington, Oregon, and Idaho. The source of CRBG melt is debated; widely spaced feeder dike swarms can be projected toward hypothetical sources near the Oregon-Idaho border. In this study, we use anisotropy of magnetic susceptibility (AMS) to track magma flow in the Monument dike swarm (MDS), the feeder dikes of the Picture Gorge Basalt (PGB). This small formation of the main-phase CRBG eruptions allows us to explore in detail the localized dynamics of a large igneous province feeder system, with implications for the larger CRBG picture. We measured the magnetic fabric of 205 oriented paleomagnetic specimens subsampled from 97 samples collected from 15 dikes of the MDS. Thermal demagnetization and hysteresis loops show that the magnetic minerals are a mixture of single domain and multidomain sized titanomagnetites. At three dikes, the paleodepth of sampling was determined to be shallow (<350 m). Magma flowing through dikes has been shown—in most cases— to acquire an anisotropic magnetic fabric with an AMS ellipsoid minimum axis perpendicular to the wall and maximum axis aligned in the direction of flow. Of 15 dikes, 12 show horizontal flow directions in the plane of the dike. Only one dike displayed imbricated fabrics, showing westward flow away from the Oregon-Idaho border. We conclude that magma flow in the MDS was sub-horizontal from a distal source.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geochemistry Geophysics Geosystems
Geochemistry Geophysics Geosystems 地学-地球化学与地球物理
CiteScore
5.90
自引率
11.40%
发文量
252
审稿时长
1 months
期刊介绍: Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged. Areas of interest for this peer-reviewed journal include, but are not limited to: The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution Principles and applications of geochemical proxies to studies of Earth history The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信