Tilman Richter, Paolo Malgaretti, Thomas M. Koller, Jens Harting
{"title":"化学反应性薄膜:动力学和稳定性","authors":"Tilman Richter, Paolo Malgaretti, Thomas M. Koller, Jens Harting","doi":"10.1002/admi.202400835","DOIUrl":null,"url":null,"abstract":"<p>Catalyst particles or complexes suspended in liquid films can trigger chemical reactions leading to inhomogeneous concentrations of reactants and products in the film. It is demonstrated that the sensitivity of the liquid film's gas–liquid surface tension to these inhomogeneous concentrations strongly impacts the film stability. Using linear stability analysis, novel scenarios are identified in which the film can be either stabilized or destabilized by the reactions. Furthermore, it is found so far unrevealed rupture mechanisms which are absent in the chemically inactive case. The linear stability predictions are confirmed by numerical simulations, which also demonstrate that the shape of chemically active droplets can depart from the spherical cap and that unsteady states such as traveling and standing waves might appear. Finally, critically discussed the relevance of the predictions by showing that the range of the selected parameters is well accessible by typical experiments.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 9","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400835","citationCount":"0","resultStr":"{\"title\":\"Chemically Reactive Thin Films: Dynamics and Stability\",\"authors\":\"Tilman Richter, Paolo Malgaretti, Thomas M. Koller, Jens Harting\",\"doi\":\"10.1002/admi.202400835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Catalyst particles or complexes suspended in liquid films can trigger chemical reactions leading to inhomogeneous concentrations of reactants and products in the film. It is demonstrated that the sensitivity of the liquid film's gas–liquid surface tension to these inhomogeneous concentrations strongly impacts the film stability. Using linear stability analysis, novel scenarios are identified in which the film can be either stabilized or destabilized by the reactions. Furthermore, it is found so far unrevealed rupture mechanisms which are absent in the chemically inactive case. The linear stability predictions are confirmed by numerical simulations, which also demonstrate that the shape of chemically active droplets can depart from the spherical cap and that unsteady states such as traveling and standing waves might appear. Finally, critically discussed the relevance of the predictions by showing that the range of the selected parameters is well accessible by typical experiments.</p>\",\"PeriodicalId\":115,\"journal\":{\"name\":\"Advanced Materials Interfaces\",\"volume\":\"12 9\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400835\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400835\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400835","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Chemically Reactive Thin Films: Dynamics and Stability
Catalyst particles or complexes suspended in liquid films can trigger chemical reactions leading to inhomogeneous concentrations of reactants and products in the film. It is demonstrated that the sensitivity of the liquid film's gas–liquid surface tension to these inhomogeneous concentrations strongly impacts the film stability. Using linear stability analysis, novel scenarios are identified in which the film can be either stabilized or destabilized by the reactions. Furthermore, it is found so far unrevealed rupture mechanisms which are absent in the chemically inactive case. The linear stability predictions are confirmed by numerical simulations, which also demonstrate that the shape of chemically active droplets can depart from the spherical cap and that unsteady states such as traveling and standing waves might appear. Finally, critically discussed the relevance of the predictions by showing that the range of the selected parameters is well accessible by typical experiments.
期刊介绍:
Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018.
The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface.
Advanced Materials Interfaces covers all topics in interface-related research:
Oil / water separation,
Applications of nanostructured materials,
2D materials and heterostructures,
Surfaces and interfaces in organic electronic devices,
Catalysis and membranes,
Self-assembly and nanopatterned surfaces,
Composite and coating materials,
Biointerfaces for technical and medical applications.
Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.