Ayse Muhammetoglu, Ozgun Akdegirmen, Secil Tuzun Dugan, Pelin Orhan
{"title":"一个控制非点源污染的建模框架和评估识别关键源区域的最佳管理实践","authors":"Ayse Muhammetoglu, Ozgun Akdegirmen, Secil Tuzun Dugan, Pelin Orhan","doi":"10.1007/s12665-025-12278-1","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a modeling framework for nonpoint source (NPS) pollution control which involves the use of the MapShed hydrological model and the Water Quality Analysis Simulation Program (WASP8) to identify critical source areas (CSAs) for improving in-stream water quality at the watershed scale based on the efficiencies of agricultural best management practices (BMPs) for NPS load reductions. The study area is the coastal watershed of the Lower Aksu Stream in the south of Turkey. Extensive data collection facilitated model calibration, validation, and scenario analyses. There was a good agreement between the model predictions and measurements related to flow rate and water quality parameters. The most effective scenario (S3) combining BMPs for agriculture, pastureland, and animal waste management achieved significant annual load reductions: approximately 40% for total nitrogen (TN) and 25% for total phosphorus (TP). Two sub-watersheds were defined as the CSAs based on the contributions to total NPS pollution loads and load reductions by the investigated BMPs. Pastureland and animal waste management practices (S1 Scenario) were most effective in sub-watershed 5 with contributions of approximately 32% for both TN and TP annual load reductions. Scenario S2 (agricultural waste management) and Scenario S3 were most successful in sub-watershed 8 with contributions of 30.3% and 27.3% for TN and 35.7% and 28.7% for TP annual load reductions, respectively. The identification of CSAs enhances the effectiveness of BMPs for NPS pollution control.</p></div>","PeriodicalId":542,"journal":{"name":"Environmental Earth Sciences","volume":"84 10","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12665-025-12278-1.pdf","citationCount":"0","resultStr":"{\"title\":\"A modeling framework for control of nonpoint source pollution and evaluation of best management practices for identification of critical source areas\",\"authors\":\"Ayse Muhammetoglu, Ozgun Akdegirmen, Secil Tuzun Dugan, Pelin Orhan\",\"doi\":\"10.1007/s12665-025-12278-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a modeling framework for nonpoint source (NPS) pollution control which involves the use of the MapShed hydrological model and the Water Quality Analysis Simulation Program (WASP8) to identify critical source areas (CSAs) for improving in-stream water quality at the watershed scale based on the efficiencies of agricultural best management practices (BMPs) for NPS load reductions. The study area is the coastal watershed of the Lower Aksu Stream in the south of Turkey. Extensive data collection facilitated model calibration, validation, and scenario analyses. There was a good agreement between the model predictions and measurements related to flow rate and water quality parameters. The most effective scenario (S3) combining BMPs for agriculture, pastureland, and animal waste management achieved significant annual load reductions: approximately 40% for total nitrogen (TN) and 25% for total phosphorus (TP). Two sub-watersheds were defined as the CSAs based on the contributions to total NPS pollution loads and load reductions by the investigated BMPs. Pastureland and animal waste management practices (S1 Scenario) were most effective in sub-watershed 5 with contributions of approximately 32% for both TN and TP annual load reductions. Scenario S2 (agricultural waste management) and Scenario S3 were most successful in sub-watershed 8 with contributions of 30.3% and 27.3% for TN and 35.7% and 28.7% for TP annual load reductions, respectively. The identification of CSAs enhances the effectiveness of BMPs for NPS pollution control.</p></div>\",\"PeriodicalId\":542,\"journal\":{\"name\":\"Environmental Earth Sciences\",\"volume\":\"84 10\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s12665-025-12278-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Earth Sciences\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12665-025-12278-1\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Earth Sciences","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s12665-025-12278-1","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
A modeling framework for control of nonpoint source pollution and evaluation of best management practices for identification of critical source areas
This paper presents a modeling framework for nonpoint source (NPS) pollution control which involves the use of the MapShed hydrological model and the Water Quality Analysis Simulation Program (WASP8) to identify critical source areas (CSAs) for improving in-stream water quality at the watershed scale based on the efficiencies of agricultural best management practices (BMPs) for NPS load reductions. The study area is the coastal watershed of the Lower Aksu Stream in the south of Turkey. Extensive data collection facilitated model calibration, validation, and scenario analyses. There was a good agreement between the model predictions and measurements related to flow rate and water quality parameters. The most effective scenario (S3) combining BMPs for agriculture, pastureland, and animal waste management achieved significant annual load reductions: approximately 40% for total nitrogen (TN) and 25% for total phosphorus (TP). Two sub-watersheds were defined as the CSAs based on the contributions to total NPS pollution loads and load reductions by the investigated BMPs. Pastureland and animal waste management practices (S1 Scenario) were most effective in sub-watershed 5 with contributions of approximately 32% for both TN and TP annual load reductions. Scenario S2 (agricultural waste management) and Scenario S3 were most successful in sub-watershed 8 with contributions of 30.3% and 27.3% for TN and 35.7% and 28.7% for TP annual load reductions, respectively. The identification of CSAs enhances the effectiveness of BMPs for NPS pollution control.
期刊介绍:
Environmental Earth Sciences is an international multidisciplinary journal concerned with all aspects of interaction between humans, natural resources, ecosystems, special climates or unique geographic zones, and the earth:
Water and soil contamination caused by waste management and disposal practices
Environmental problems associated with transportation by land, air, or water
Geological processes that may impact biosystems or humans
Man-made or naturally occurring geological or hydrological hazards
Environmental problems associated with the recovery of materials from the earth
Environmental problems caused by extraction of minerals, coal, and ores, as well as oil and gas, water and alternative energy sources
Environmental impacts of exploration and recultivation – Environmental impacts of hazardous materials
Management of environmental data and information in data banks and information systems
Dissemination of knowledge on techniques, methods, approaches and experiences to improve and remediate the environment
In pursuit of these topics, the geoscientific disciplines are invited to contribute their knowledge and experience. Major disciplines include: hydrogeology, hydrochemistry, geochemistry, geophysics, engineering geology, remediation science, natural resources management, environmental climatology and biota, environmental geography, soil science and geomicrobiology.