Vojtěch Vrba, Viktor Walter, Petr Štěpán, Martin Saska
{"title":"FIMD:敏捷无人机群中基于uv的视觉相对定位快速隔离标记检测","authors":"Vojtěch Vrba, Viktor Walter, Petr Štěpán, Martin Saska","doi":"10.1007/s10514-025-10197-5","DOIUrl":null,"url":null,"abstract":"<div><p>A novel approach for the fast onboard detection of isolated markers for visual relative localisation of multiple teammates in agile UAV swarms is introduced in this paper. As the detection forms a key component of real-time localisation systems, a three-fold innovation is presented, consisting of an optimised procedure for CPUs, a GPU shader program, and a functionally equivalent FPGA streaming architecture. For the proposed CPU and GPU solutions, the mean processing time per pixel of input camera frames was accelerated by two to three orders of magnitude compared to the unoptimised state-of-the-art approach. For the localisation task, the proposed FPGA architecture offered the most significant overall acceleration by minimising the total delay from camera exposure to detection results. Additionally, the proposed solutions were evaluated on various 32-bit and 64-bit embedded platforms to demonstrate their efficiency, as well as their feasibility for applications using low-end UAVs and MAVs. Thus, it has become a crucial enabling technology for agile UAV swarming.\n</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":"49 2","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10514-025-10197-5.pdf","citationCount":"0","resultStr":"{\"title\":\"FIMD: fast isolated marker detection for UV-based visual relative localisation in agile UAV swarms\",\"authors\":\"Vojtěch Vrba, Viktor Walter, Petr Štěpán, Martin Saska\",\"doi\":\"10.1007/s10514-025-10197-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A novel approach for the fast onboard detection of isolated markers for visual relative localisation of multiple teammates in agile UAV swarms is introduced in this paper. As the detection forms a key component of real-time localisation systems, a three-fold innovation is presented, consisting of an optimised procedure for CPUs, a GPU shader program, and a functionally equivalent FPGA streaming architecture. For the proposed CPU and GPU solutions, the mean processing time per pixel of input camera frames was accelerated by two to three orders of magnitude compared to the unoptimised state-of-the-art approach. For the localisation task, the proposed FPGA architecture offered the most significant overall acceleration by minimising the total delay from camera exposure to detection results. Additionally, the proposed solutions were evaluated on various 32-bit and 64-bit embedded platforms to demonstrate their efficiency, as well as their feasibility for applications using low-end UAVs and MAVs. Thus, it has become a crucial enabling technology for agile UAV swarming.\\n</p></div>\",\"PeriodicalId\":55409,\"journal\":{\"name\":\"Autonomous Robots\",\"volume\":\"49 2\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10514-025-10197-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autonomous Robots\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10514-025-10197-5\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Robots","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10514-025-10197-5","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
FIMD: fast isolated marker detection for UV-based visual relative localisation in agile UAV swarms
A novel approach for the fast onboard detection of isolated markers for visual relative localisation of multiple teammates in agile UAV swarms is introduced in this paper. As the detection forms a key component of real-time localisation systems, a three-fold innovation is presented, consisting of an optimised procedure for CPUs, a GPU shader program, and a functionally equivalent FPGA streaming architecture. For the proposed CPU and GPU solutions, the mean processing time per pixel of input camera frames was accelerated by two to three orders of magnitude compared to the unoptimised state-of-the-art approach. For the localisation task, the proposed FPGA architecture offered the most significant overall acceleration by minimising the total delay from camera exposure to detection results. Additionally, the proposed solutions were evaluated on various 32-bit and 64-bit embedded platforms to demonstrate their efficiency, as well as their feasibility for applications using low-end UAVs and MAVs. Thus, it has become a crucial enabling technology for agile UAV swarming.
期刊介绍:
Autonomous Robots reports on the theory and applications of robotic systems capable of some degree of self-sufficiency. It features papers that include performance data on actual robots in the real world. Coverage includes: control of autonomous robots · real-time vision · autonomous wheeled and tracked vehicles · legged vehicles · computational architectures for autonomous systems · distributed architectures for learning, control and adaptation · studies of autonomous robot systems · sensor fusion · theory of autonomous systems · terrain mapping and recognition · self-calibration and self-repair for robots · self-reproducing intelligent structures · genetic algorithms as models for robot development.
The focus is on the ability to move and be self-sufficient, not on whether the system is an imitation of biology. Of course, biological models for robotic systems are of major interest to the journal since living systems are prototypes for autonomous behavior.