\(\ell ^2(\mathbb Z^d)\)上具有单调势的拟周期算子的微扰对角化和谱隙

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Ilya Kachkovskiy, Leonid Parnovski, Roman Shterenberg
{"title":"\\(\\ell ^2(\\mathbb Z^d)\\)上具有单调势的拟周期算子的微扰对角化和谱隙","authors":"Ilya Kachkovskiy,&nbsp;Leonid Parnovski,&nbsp;Roman Shterenberg","doi":"10.1007/s00220-025-05280-y","DOIUrl":null,"url":null,"abstract":"<div><p>We obtain a perturbative proof of localization for quasiperiodic operators on <span>\\(\\ell ^2(\\mathbb Z^d)\\)</span> with one-dimensional phase space and monotone sampling functions, in the regime of small hopping. The proof is based on an iterative scheme which can be considered as a local (in the energy and the phase) and convergent version of KAM-type diagonalization, whose result is a covariant family of uniformly localized eigenvalues and eigenvectors. We also prove that the spectra of such operators contain infinitely many gaps.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 6","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-025-05280-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Perturbative Diagonalization and Spectral Gaps of Quasiperiodic Operators on \\\\(\\\\ell ^2(\\\\mathbb Z^d)\\\\) with Monotone Potentials\",\"authors\":\"Ilya Kachkovskiy,&nbsp;Leonid Parnovski,&nbsp;Roman Shterenberg\",\"doi\":\"10.1007/s00220-025-05280-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We obtain a perturbative proof of localization for quasiperiodic operators on <span>\\\\(\\\\ell ^2(\\\\mathbb Z^d)\\\\)</span> with one-dimensional phase space and monotone sampling functions, in the regime of small hopping. The proof is based on an iterative scheme which can be considered as a local (in the energy and the phase) and convergent version of KAM-type diagonalization, whose result is a covariant family of uniformly localized eigenvalues and eigenvectors. We also prove that the spectra of such operators contain infinitely many gaps.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 6\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00220-025-05280-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-025-05280-y\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05280-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

在小跳变条件下,得到了\(\ell ^2(\mathbb Z^d)\)上具有一维相空间和单调采样函数的准周期算子的局域性的摄动证明。该证明基于一个迭代格式,该迭代格式可以看作是局部(在能量和相位上)的收敛版本的kam型对角化,其结果是一致局域特征值和特征向量的协变族。我们还证明了这类算子的谱包含无穷多个间隙。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Perturbative Diagonalization and Spectral Gaps of Quasiperiodic Operators on \(\ell ^2(\mathbb Z^d)\) with Monotone Potentials

We obtain a perturbative proof of localization for quasiperiodic operators on \(\ell ^2(\mathbb Z^d)\) with one-dimensional phase space and monotone sampling functions, in the regime of small hopping. The proof is based on an iterative scheme which can be considered as a local (in the energy and the phase) and convergent version of KAM-type diagonalization, whose result is a covariant family of uniformly localized eigenvalues and eigenvectors. We also prove that the spectra of such operators contain infinitely many gaps.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信