在BiVO4上带氧空位的金纳米颗粒电催化硝酸还原为氨†

IF 4.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
RSC Advances Pub Date : 2025-05-07 DOI:10.1039/D5RA00886G
Kui Hu, Shengbo Zhang, Zhixian Mao, Dongnan Zhao, Daopeng Li, Zhongjun Li, Qiang Li, Qiong Tang and Tongfei Shi
{"title":"在BiVO4上带氧空位的金纳米颗粒电催化硝酸还原为氨†","authors":"Kui Hu, Shengbo Zhang, Zhixian Mao, Dongnan Zhao, Daopeng Li, Zhongjun Li, Qiang Li, Qiong Tang and Tongfei Shi","doi":"10.1039/D5RA00886G","DOIUrl":null,"url":null,"abstract":"<p >Ammonia (NH<small><sub>3</sub></small>) is an important energy carrier and agricultural fertilizer. Development of electrocatalysts for efficient NH<small><sub>3</sub></small> electrosynthesis <em>via</em> the nitrate reduction reaction (NitRR) is highly desirable but remains a key challenge. In this work, we successfully loaded Au nanoparticles on BiVO<small><sub>4</sub></small> by a one-step hydrothermal method. It is demonstrated that by using Au nanoparticles (10–15 nm) embedded on BiVO<small><sub>4</sub></small> (Au/BiVO<small><sub>4</sub></small>) with oxygen vacancies (Au loading is 1.3 wt%), the electrocatalytic NitRR is indeed possible under ambient conditions. Unexpectedly, at −1.35 V (<em>vs.</em> RHE), the yield rate for NH<small><sub>3</sub></small> of Au/BiVO<small><sub>4</sub></small> reached 3320.9 ± 89.9 μg h<small><sup>−1</sup></small> cm<small><sup>−2</sup></small>, which was far superior to (11.3 μg h<small><sup>−1</sup></small> cm<small><sup>−2</sup></small>) pristine BiVO<small><sub>4</sub></small>. The <small><sup>15</sup></small>N isotope labeling experiments confirmed that the produced NH<small><sub>3</sub></small> indeed originated from the nitrate reduction reaction catalyzed by Au/BiVO<small><sub>4</sub></small>. The comprehensive analysis further confirms that the oxygen vacancies in Au/BiVO<small><sub>4</sub></small> can effectively weaken the N–O bonding and restrain the formation of by-products, resulting in high faradaic efficiency and NH<small><sub>3</sub></small> selectivity. Furthermore, <em>in situ</em> differential electrochemical mass spectrometry (DEMS) was adopted to monitor the electrochemical separation of the NitRR products on the surface of Au/BiVO<small><sub>4</sub></small>.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 19","pages":" 14739-14744"},"PeriodicalIF":4.6000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra00886g?page=search","citationCount":"0","resultStr":"{\"title\":\"Au nanoparticles with oxygen vacancies on BiVO4 for electrocatalytic nitrate reduction to ammonia†\",\"authors\":\"Kui Hu, Shengbo Zhang, Zhixian Mao, Dongnan Zhao, Daopeng Li, Zhongjun Li, Qiang Li, Qiong Tang and Tongfei Shi\",\"doi\":\"10.1039/D5RA00886G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Ammonia (NH<small><sub>3</sub></small>) is an important energy carrier and agricultural fertilizer. Development of electrocatalysts for efficient NH<small><sub>3</sub></small> electrosynthesis <em>via</em> the nitrate reduction reaction (NitRR) is highly desirable but remains a key challenge. In this work, we successfully loaded Au nanoparticles on BiVO<small><sub>4</sub></small> by a one-step hydrothermal method. It is demonstrated that by using Au nanoparticles (10–15 nm) embedded on BiVO<small><sub>4</sub></small> (Au/BiVO<small><sub>4</sub></small>) with oxygen vacancies (Au loading is 1.3 wt%), the electrocatalytic NitRR is indeed possible under ambient conditions. Unexpectedly, at −1.35 V (<em>vs.</em> RHE), the yield rate for NH<small><sub>3</sub></small> of Au/BiVO<small><sub>4</sub></small> reached 3320.9 ± 89.9 μg h<small><sup>−1</sup></small> cm<small><sup>−2</sup></small>, which was far superior to (11.3 μg h<small><sup>−1</sup></small> cm<small><sup>−2</sup></small>) pristine BiVO<small><sub>4</sub></small>. The <small><sup>15</sup></small>N isotope labeling experiments confirmed that the produced NH<small><sub>3</sub></small> indeed originated from the nitrate reduction reaction catalyzed by Au/BiVO<small><sub>4</sub></small>. The comprehensive analysis further confirms that the oxygen vacancies in Au/BiVO<small><sub>4</sub></small> can effectively weaken the N–O bonding and restrain the formation of by-products, resulting in high faradaic efficiency and NH<small><sub>3</sub></small> selectivity. Furthermore, <em>in situ</em> differential electrochemical mass spectrometry (DEMS) was adopted to monitor the electrochemical separation of the NitRR products on the surface of Au/BiVO<small><sub>4</sub></small>.</p>\",\"PeriodicalId\":102,\"journal\":{\"name\":\"RSC Advances\",\"volume\":\" 19\",\"pages\":\" 14739-14744\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra00886g?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Advances\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra00886g\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra00886g","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

氨(NH3)是重要的能量载体和农业肥料。开发通过硝酸还原反应(NitRR)高效电合成NH3的电催化剂是非常需要的,但仍然是一个关键的挑战。在这项工作中,我们成功地通过一步水热法将Au纳米颗粒加载到BiVO4上。结果表明,将10 ~ 15 nm的Au纳米颗粒包埋在氧空位(Au/BiVO4)上(Au负载为1.3 wt%),在常温条件下可以实现NitRR的电催化。出乎意料的是,在−1.35 V(相对于RHE)下,Au/BiVO4的NH3产率达到3320.9±89.9 μg h−1 cm−2,远远优于原始BiVO4 (11.3 μg h−1 cm−2)。15N同位素标记实验证实了生成的NH3确实来源于Au/BiVO4催化的硝酸还原反应。综合分析进一步证实,Au/BiVO4中的氧空位可以有效削弱N-O键,抑制副产物的形成,从而获得较高的法拉第效率和NH3选择性。采用原位差示电化学质谱法(dms)对Au/BiVO4表面NitRR产物的电化学分离进行了监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Au nanoparticles with oxygen vacancies on BiVO4 for electrocatalytic nitrate reduction to ammonia†

Au nanoparticles with oxygen vacancies on BiVO4 for electrocatalytic nitrate reduction to ammonia†

Ammonia (NH3) is an important energy carrier and agricultural fertilizer. Development of electrocatalysts for efficient NH3 electrosynthesis via the nitrate reduction reaction (NitRR) is highly desirable but remains a key challenge. In this work, we successfully loaded Au nanoparticles on BiVO4 by a one-step hydrothermal method. It is demonstrated that by using Au nanoparticles (10–15 nm) embedded on BiVO4 (Au/BiVO4) with oxygen vacancies (Au loading is 1.3 wt%), the electrocatalytic NitRR is indeed possible under ambient conditions. Unexpectedly, at −1.35 V (vs. RHE), the yield rate for NH3 of Au/BiVO4 reached 3320.9 ± 89.9 μg h−1 cm−2, which was far superior to (11.3 μg h−1 cm−2) pristine BiVO4. The 15N isotope labeling experiments confirmed that the produced NH3 indeed originated from the nitrate reduction reaction catalyzed by Au/BiVO4. The comprehensive analysis further confirms that the oxygen vacancies in Au/BiVO4 can effectively weaken the N–O bonding and restrain the formation of by-products, resulting in high faradaic efficiency and NH3 selectivity. Furthermore, in situ differential electrochemical mass spectrometry (DEMS) was adopted to monitor the electrochemical separation of the NitRR products on the surface of Au/BiVO4.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信