用于高端工业应用的碳纤维复合材料优化结构的温度依赖机械性能和材料改性

IF 12.7 1区 材料科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Yun-Hae Kim , Sanjay Kumar , Xiaoqi Li , Se-Yoon Kim , Do-Hoon Shin
{"title":"用于高端工业应用的碳纤维复合材料优化结构的温度依赖机械性能和材料改性","authors":"Yun-Hae Kim ,&nbsp;Sanjay Kumar ,&nbsp;Xiaoqi Li ,&nbsp;Se-Yoon Kim ,&nbsp;Do-Hoon Shin","doi":"10.1016/j.compositesb.2025.112602","DOIUrl":null,"url":null,"abstract":"<div><div>This review investigates the mechanical performance and environmental durability of carbon fiber-reinforced polymer composites, covering thermoplastic (e.g., CF/PEKK) and thermoset (e.g., carbon/epoxy) systems under varying temperature, mechanical, and geometric conditions, while highlighting advanced material modification strategies. At cryogenic temperatures, CF/PEKK composites demonstrate notable improvements in interlaminar shear strength (up to 42 % at −196 °C), tensile strength (2403 MPa vs. 2274 MPa at RT), and flexural modulus (142 GPa at −196 °C), driven by matrix stiffening and improved fiber-matrix interactions, making them promising for aerospace and cryogenic applications. Pre-bending induces micro-cracking, reducing flexural modulus by up to 24 %, though low temperatures mitigate the damage. CF/PEKK composites also show robust Mode II toughness (4800 J/m<sup>2</sup>). Interfacial engineering, such as thermoplastic film interleaving (PEI, PEEK), significantly enhances fracture toughness in thermoset composites, with PEEK-modified laminates achieving a 248 % increase in Mode I initiation toughness (1600 J/m<sup>2</sup>). Geometric optimization improves joint performance; CF/PEKK bolted joints with a width-to-hole diameter (W/D) ratio of 4 attain a bearing strength of ∼900 MPa at low temperatures, while higher W/D ratios shift failure modes and increase peak loads by 65.4 % (5.08 kN). Incorporating 0.5 wt% halloysite nanotubes (HNTs) to PEI adhesives improves lap shear strength by 12.5 %. Similarly, amorphous HNTs into carbon/epoxy composites reduces moisture absorption by 66 % and boosts flexural strength (3141 MPa). These findings underscore the critical role of strategic material selection, processing optimization, and fiber-matrix interface engineering in maximizing composite performance. Future work should explore bio-based matrices, nanomaterials, and 3D printing for greater sustainability and performance.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"303 ","pages":"Article 112602"},"PeriodicalIF":12.7000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature-dependent mechanical properties and material modifications of carbon fiber composites for optimized structures in high-end industrial applications\",\"authors\":\"Yun-Hae Kim ,&nbsp;Sanjay Kumar ,&nbsp;Xiaoqi Li ,&nbsp;Se-Yoon Kim ,&nbsp;Do-Hoon Shin\",\"doi\":\"10.1016/j.compositesb.2025.112602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This review investigates the mechanical performance and environmental durability of carbon fiber-reinforced polymer composites, covering thermoplastic (e.g., CF/PEKK) and thermoset (e.g., carbon/epoxy) systems under varying temperature, mechanical, and geometric conditions, while highlighting advanced material modification strategies. At cryogenic temperatures, CF/PEKK composites demonstrate notable improvements in interlaminar shear strength (up to 42 % at −196 °C), tensile strength (2403 MPa vs. 2274 MPa at RT), and flexural modulus (142 GPa at −196 °C), driven by matrix stiffening and improved fiber-matrix interactions, making them promising for aerospace and cryogenic applications. Pre-bending induces micro-cracking, reducing flexural modulus by up to 24 %, though low temperatures mitigate the damage. CF/PEKK composites also show robust Mode II toughness (4800 J/m<sup>2</sup>). Interfacial engineering, such as thermoplastic film interleaving (PEI, PEEK), significantly enhances fracture toughness in thermoset composites, with PEEK-modified laminates achieving a 248 % increase in Mode I initiation toughness (1600 J/m<sup>2</sup>). Geometric optimization improves joint performance; CF/PEKK bolted joints with a width-to-hole diameter (W/D) ratio of 4 attain a bearing strength of ∼900 MPa at low temperatures, while higher W/D ratios shift failure modes and increase peak loads by 65.4 % (5.08 kN). Incorporating 0.5 wt% halloysite nanotubes (HNTs) to PEI adhesives improves lap shear strength by 12.5 %. Similarly, amorphous HNTs into carbon/epoxy composites reduces moisture absorption by 66 % and boosts flexural strength (3141 MPa). These findings underscore the critical role of strategic material selection, processing optimization, and fiber-matrix interface engineering in maximizing composite performance. Future work should explore bio-based matrices, nanomaterials, and 3D printing for greater sustainability and performance.</div></div>\",\"PeriodicalId\":10660,\"journal\":{\"name\":\"Composites Part B: Engineering\",\"volume\":\"303 \",\"pages\":\"Article 112602\"},\"PeriodicalIF\":12.7000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part B: Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359836825005037\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836825005037","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了碳纤维增强聚合物复合材料的机械性能和环境耐久性,包括热塑性(如CF/PEKK)和热固性(如碳/环氧树脂)系统在不同温度、机械和几何条件下的性能,同时重点介绍了先进的材料改性策略。在低温下,CF/PEKK复合材料在层间剪切强度(- 196°C时高达42%)、抗拉强度(2403 MPa vs. 2274 MPa)和弯曲模量(- 196°C时142 GPa)方面表现出显著的改善,这是由于基体硬化和纤维-基体相互作用的改善,使其在航空航天和低温应用中具有前景。预弯曲会引起微裂纹,减少24%的弯曲模量,尽管低温可以减轻损伤。CF/PEKK复合材料也表现出稳健的II型韧性(4800 J/m2)。界面工程,如热塑性薄膜交错(PEI, PEEK),显著提高了热固性复合材料的断裂韧性,PEEK改性层合板的I型起始韧性提高了248% (1600 J/m2)。几何优化提高关节性能;CF/PEKK螺栓连接的宽度与孔直径(W/D)比为4,在低温下的承载强度为~ 900 MPa,而更高的W/D比改变了失效模式,峰值载荷增加了65.4% (5.08 kN)。将0.5 wt%的高岭土纳米管(HNTs)掺入PEI胶粘剂中,可使搭接剪切强度提高12.5%。同样,将无定形HNTs加入到碳/环氧复合材料中,可以减少66%的吸湿性,提高抗弯强度(3141 MPa)。这些发现强调了战略性材料选择、工艺优化和纤维-基质界面工程在最大化复合材料性能中的关键作用。未来的工作应该探索生物基基质、纳米材料和3D打印,以获得更大的可持续性和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Temperature-dependent mechanical properties and material modifications of carbon fiber composites for optimized structures in high-end industrial applications
This review investigates the mechanical performance and environmental durability of carbon fiber-reinforced polymer composites, covering thermoplastic (e.g., CF/PEKK) and thermoset (e.g., carbon/epoxy) systems under varying temperature, mechanical, and geometric conditions, while highlighting advanced material modification strategies. At cryogenic temperatures, CF/PEKK composites demonstrate notable improvements in interlaminar shear strength (up to 42 % at −196 °C), tensile strength (2403 MPa vs. 2274 MPa at RT), and flexural modulus (142 GPa at −196 °C), driven by matrix stiffening and improved fiber-matrix interactions, making them promising for aerospace and cryogenic applications. Pre-bending induces micro-cracking, reducing flexural modulus by up to 24 %, though low temperatures mitigate the damage. CF/PEKK composites also show robust Mode II toughness (4800 J/m2). Interfacial engineering, such as thermoplastic film interleaving (PEI, PEEK), significantly enhances fracture toughness in thermoset composites, with PEEK-modified laminates achieving a 248 % increase in Mode I initiation toughness (1600 J/m2). Geometric optimization improves joint performance; CF/PEKK bolted joints with a width-to-hole diameter (W/D) ratio of 4 attain a bearing strength of ∼900 MPa at low temperatures, while higher W/D ratios shift failure modes and increase peak loads by 65.4 % (5.08 kN). Incorporating 0.5 wt% halloysite nanotubes (HNTs) to PEI adhesives improves lap shear strength by 12.5 %. Similarly, amorphous HNTs into carbon/epoxy composites reduces moisture absorption by 66 % and boosts flexural strength (3141 MPa). These findings underscore the critical role of strategic material selection, processing optimization, and fiber-matrix interface engineering in maximizing composite performance. Future work should explore bio-based matrices, nanomaterials, and 3D printing for greater sustainability and performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composites Part B: Engineering
Composites Part B: Engineering 工程技术-材料科学:复合
CiteScore
24.40
自引率
11.50%
发文量
784
审稿时长
21 days
期刊介绍: Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development. The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信