{"title":"揭示植物mirna与植物次生代谢物之间的相互作用:跨王国调控机制的新前沿","authors":"Yamini Agarwal , Pammi Gauba , Vibha Rani","doi":"10.1016/j.plaphy.2025.109965","DOIUrl":null,"url":null,"abstract":"<div><div>MicroRNAs (miRNAs) are also known as single-stranded RNAs with 18–24 nucleotides and exhibit substantial conservation. They represent a class of innate RNAs that are essential for plant cell development, division, differentiation, proliferation, and death. The reported pharmacological effects of plant-derived secondary metabolites contribute to their therapeutic potential. Plant-derived miRNAs have drawn considerable interest as a result of their active involvement in these plant secondary metabolites (PSM). PSMs can be absorbed via diet, and exert a wide range of their therapeutic potential, via exogenous and endogenous interactions. The recent identification of plant miRNAs in controlling the expression of certain genes in mammals has attracted a lot of attention and created new opportunities for studying cross-kingdom regulatory mechanisms in biological research. This review discusses the role of miRNAs in plants, with focus on PSMs via cross-kingdom. The aim is to provide a conceptual theoretical framework based on the involvement of plant miRNA with secondary metabolites and being used as a transfer molecule for cross-kingdom gene regulation. Plant miRNAs' diverse expression patterns and ability to affect several physiological and developmental processes make them promising candidates for advancing preclinical research.</div></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"225 ","pages":"Article 109965"},"PeriodicalIF":6.1000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unravelling the interplay between plant miRNAs and plant secondary metabolites: A new frontier in cross- kingdom regulatory mechanisms\",\"authors\":\"Yamini Agarwal , Pammi Gauba , Vibha Rani\",\"doi\":\"10.1016/j.plaphy.2025.109965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>MicroRNAs (miRNAs) are also known as single-stranded RNAs with 18–24 nucleotides and exhibit substantial conservation. They represent a class of innate RNAs that are essential for plant cell development, division, differentiation, proliferation, and death. The reported pharmacological effects of plant-derived secondary metabolites contribute to their therapeutic potential. Plant-derived miRNAs have drawn considerable interest as a result of their active involvement in these plant secondary metabolites (PSM). PSMs can be absorbed via diet, and exert a wide range of their therapeutic potential, via exogenous and endogenous interactions. The recent identification of plant miRNAs in controlling the expression of certain genes in mammals has attracted a lot of attention and created new opportunities for studying cross-kingdom regulatory mechanisms in biological research. This review discusses the role of miRNAs in plants, with focus on PSMs via cross-kingdom. The aim is to provide a conceptual theoretical framework based on the involvement of plant miRNA with secondary metabolites and being used as a transfer molecule for cross-kingdom gene regulation. Plant miRNAs' diverse expression patterns and ability to affect several physiological and developmental processes make them promising candidates for advancing preclinical research.</div></div>\",\"PeriodicalId\":20234,\"journal\":{\"name\":\"Plant Physiology and Biochemistry\",\"volume\":\"225 \",\"pages\":\"Article 109965\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology and Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0981942825004930\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0981942825004930","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Unravelling the interplay between plant miRNAs and plant secondary metabolites: A new frontier in cross- kingdom regulatory mechanisms
MicroRNAs (miRNAs) are also known as single-stranded RNAs with 18–24 nucleotides and exhibit substantial conservation. They represent a class of innate RNAs that are essential for plant cell development, division, differentiation, proliferation, and death. The reported pharmacological effects of plant-derived secondary metabolites contribute to their therapeutic potential. Plant-derived miRNAs have drawn considerable interest as a result of their active involvement in these plant secondary metabolites (PSM). PSMs can be absorbed via diet, and exert a wide range of their therapeutic potential, via exogenous and endogenous interactions. The recent identification of plant miRNAs in controlling the expression of certain genes in mammals has attracted a lot of attention and created new opportunities for studying cross-kingdom regulatory mechanisms in biological research. This review discusses the role of miRNAs in plants, with focus on PSMs via cross-kingdom. The aim is to provide a conceptual theoretical framework based on the involvement of plant miRNA with secondary metabolites and being used as a transfer molecule for cross-kingdom gene regulation. Plant miRNAs' diverse expression patterns and ability to affect several physiological and developmental processes make them promising candidates for advancing preclinical research.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.