{"title":"金刚石导热片复合材料研究进展","authors":"Zhen Yan, Wenyi Tong, Xiangyu Wang, Desong Fan","doi":"10.1016/j.compositesa.2025.109008","DOIUrl":null,"url":null,"abstract":"<div><div>Heat spreading is a crucial aspect of the electronic thermal management, effectively reducing thermal gradients and preventing the formation of hotspots. As the power density of electronic devices continues to increase, the limitations posed by low thermal conductivity have led to traditional heat spreaders, such as metals and ceramics, gradually falling short of meeting actual usage requirements. Thanks to the excellent thermal conductivity, mechanical properties and tunability of thermal expansion coefficient, diamond composites based heat spreaders have recently garnered extensive attention and research. However, systematic summary and review of advanced diamond composites heat spreaders are lacking, which is not conducive to actively promoting the development of this field. Herein, we conduct an in-depth review of advanced diamond composites with the aim of exploring its application value as heat spreaders. First, the theoretical background of diamond composites is presented. Subsequently, current mainstream preparation methods for diamond composites are introduced. Following this, advanced diamond composites are discussed, with a focus on the latest breakthroughs in improving thermal properties. Finally, reliability tests are explored to guide the practical application of diamond composites as heat spreaders. It is hoped that this review will contribute to further research on diamond composites as heat spreaders.</div></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":"196 ","pages":"Article 109008"},"PeriodicalIF":8.1000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review of diamond composites for heat spreaders\",\"authors\":\"Zhen Yan, Wenyi Tong, Xiangyu Wang, Desong Fan\",\"doi\":\"10.1016/j.compositesa.2025.109008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Heat spreading is a crucial aspect of the electronic thermal management, effectively reducing thermal gradients and preventing the formation of hotspots. As the power density of electronic devices continues to increase, the limitations posed by low thermal conductivity have led to traditional heat spreaders, such as metals and ceramics, gradually falling short of meeting actual usage requirements. Thanks to the excellent thermal conductivity, mechanical properties and tunability of thermal expansion coefficient, diamond composites based heat spreaders have recently garnered extensive attention and research. However, systematic summary and review of advanced diamond composites heat spreaders are lacking, which is not conducive to actively promoting the development of this field. Herein, we conduct an in-depth review of advanced diamond composites with the aim of exploring its application value as heat spreaders. First, the theoretical background of diamond composites is presented. Subsequently, current mainstream preparation methods for diamond composites are introduced. Following this, advanced diamond composites are discussed, with a focus on the latest breakthroughs in improving thermal properties. Finally, reliability tests are explored to guide the practical application of diamond composites as heat spreaders. It is hoped that this review will contribute to further research on diamond composites as heat spreaders.</div></div>\",\"PeriodicalId\":282,\"journal\":{\"name\":\"Composites Part A: Applied Science and Manufacturing\",\"volume\":\"196 \",\"pages\":\"Article 109008\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part A: Applied Science and Manufacturing\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359835X25003021\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part A: Applied Science and Manufacturing","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359835X25003021","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Heat spreading is a crucial aspect of the electronic thermal management, effectively reducing thermal gradients and preventing the formation of hotspots. As the power density of electronic devices continues to increase, the limitations posed by low thermal conductivity have led to traditional heat spreaders, such as metals and ceramics, gradually falling short of meeting actual usage requirements. Thanks to the excellent thermal conductivity, mechanical properties and tunability of thermal expansion coefficient, diamond composites based heat spreaders have recently garnered extensive attention and research. However, systematic summary and review of advanced diamond composites heat spreaders are lacking, which is not conducive to actively promoting the development of this field. Herein, we conduct an in-depth review of advanced diamond composites with the aim of exploring its application value as heat spreaders. First, the theoretical background of diamond composites is presented. Subsequently, current mainstream preparation methods for diamond composites are introduced. Following this, advanced diamond composites are discussed, with a focus on the latest breakthroughs in improving thermal properties. Finally, reliability tests are explored to guide the practical application of diamond composites as heat spreaders. It is hoped that this review will contribute to further research on diamond composites as heat spreaders.
期刊介绍:
Composites Part A: Applied Science and Manufacturing is a comprehensive journal that publishes original research papers, review articles, case studies, short communications, and letters covering various aspects of composite materials science and technology. This includes fibrous and particulate reinforcements in polymeric, metallic, and ceramic matrices, as well as 'natural' composites like wood and biological materials. The journal addresses topics such as properties, design, and manufacture of reinforcing fibers and particles, novel architectures and concepts, multifunctional composites, advancements in fabrication and processing, manufacturing science, process modeling, experimental mechanics, microstructural characterization, interfaces, prediction and measurement of mechanical, physical, and chemical behavior, and performance in service. Additionally, articles on economic and commercial aspects, design, and case studies are welcomed. All submissions undergo rigorous peer review to ensure they contribute significantly and innovatively, maintaining high standards for content and presentation. The editorial team aims to expedite the review process for prompt publication.