雾化器喷雾热解(NSP)法制备PbS薄膜的光探测性能:涂层温度的影响

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
S. Sathish Kumar , S. Valanarasu , R.S. Rimal Isaac , A. Vimala Juliet , V. Ganesh , I.S. Yahia
{"title":"雾化器喷雾热解(NSP)法制备PbS薄膜的光探测性能:涂层温度的影响","authors":"S. Sathish Kumar ,&nbsp;S. Valanarasu ,&nbsp;R.S. Rimal Isaac ,&nbsp;A. Vimala Juliet ,&nbsp;V. Ganesh ,&nbsp;I.S. Yahia","doi":"10.1016/j.jpcs.2025.112811","DOIUrl":null,"url":null,"abstract":"<div><div>The present study examines the effect of substrate temperature on the photodetection capabilities of lead sulfide (PbS) thin films prepared on glass substrates using a cost-effective nebulizer spray pyrolysis (NSP) technique. The substrate temperature varied from 175 °C to 300 °C, with a 25 °C increment for each film. The X-ray diffraction analysis confirmed the formation of a face - centered cubic structure. In addition, the PbS crystallinity was enhanced by raising the substrate temperature, the largest crystallite size (77 nm) was observed at 275 °C deposited film. The development of nanograins and the change in grain size due to the substrate temperature were confirmed by the obtained FESEM images. EDX spectra demonstrated the presence of Pb and S elements in the film deposited at 275 °C. The optical direct bandgap decreased from 1.92 eV to 1.70 eV with increasing substrate temperatures from 175 °C to 275 °C, but significantly increased to 1.75 eV at 300 °C. All the prepared PbS thin films demonstratde an excellent photodetection capabilities. However, the PbS film coated at 275 °C exhibited high Responsivity (7.04 × 10<sup>−2</sup> A/W), Detectivity (2.99 × 10<sup>9</sup> Jones), and External quantum efficiency (16.4 %) in comparison to the other deposited thin films.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"206 ","pages":"Article 112811"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced photodetection properties of PbS thin films prepared via nebulizer spray pyrolysis (NSP) technique: Effect of coating temperature\",\"authors\":\"S. Sathish Kumar ,&nbsp;S. Valanarasu ,&nbsp;R.S. Rimal Isaac ,&nbsp;A. Vimala Juliet ,&nbsp;V. Ganesh ,&nbsp;I.S. Yahia\",\"doi\":\"10.1016/j.jpcs.2025.112811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The present study examines the effect of substrate temperature on the photodetection capabilities of lead sulfide (PbS) thin films prepared on glass substrates using a cost-effective nebulizer spray pyrolysis (NSP) technique. The substrate temperature varied from 175 °C to 300 °C, with a 25 °C increment for each film. The X-ray diffraction analysis confirmed the formation of a face - centered cubic structure. In addition, the PbS crystallinity was enhanced by raising the substrate temperature, the largest crystallite size (77 nm) was observed at 275 °C deposited film. The development of nanograins and the change in grain size due to the substrate temperature were confirmed by the obtained FESEM images. EDX spectra demonstrated the presence of Pb and S elements in the film deposited at 275 °C. The optical direct bandgap decreased from 1.92 eV to 1.70 eV with increasing substrate temperatures from 175 °C to 275 °C, but significantly increased to 1.75 eV at 300 °C. All the prepared PbS thin films demonstratde an excellent photodetection capabilities. However, the PbS film coated at 275 °C exhibited high Responsivity (7.04 × 10<sup>−2</sup> A/W), Detectivity (2.99 × 10<sup>9</sup> Jones), and External quantum efficiency (16.4 %) in comparison to the other deposited thin films.</div></div>\",\"PeriodicalId\":16811,\"journal\":{\"name\":\"Journal of Physics and Chemistry of Solids\",\"volume\":\"206 \",\"pages\":\"Article 112811\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics and Chemistry of Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002236972500263X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002236972500263X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究考察了衬底温度对利用具有成本效益的雾化器喷雾热解(NSP)技术在玻璃衬底上制备的硫化铅(PbS)薄膜的光探测能力的影响。衬底温度从175°C变化到300°C,每个薄膜增加25°C。x射线衍射分析证实了面心立方结构的形成。此外,提高衬底温度可以增强PbS的结晶度,在275℃沉积薄膜时,其晶粒尺寸最大(77 nm)。FESEM图像证实了纳米颗粒的发育和晶粒尺寸随衬底温度的变化。EDX光谱显示,在275℃下沉积的薄膜中存在Pb和S元素。当衬底温度从175°C升高到275°C时,光学直接带隙从1.92 eV减小到1.70 eV,但在300°C时显著增加到1.75 eV。所有制备的PbS薄膜都显示出良好的光探测能力。然而,与其他沉积的薄膜相比,在275°C下涂层的PbS薄膜具有较高的响应率(7.04 × 10−2 A/W),探测率(2.99 × 109 Jones)和外部量子效率(16.4%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced photodetection properties of PbS thin films prepared via nebulizer spray pyrolysis (NSP) technique: Effect of coating temperature
The present study examines the effect of substrate temperature on the photodetection capabilities of lead sulfide (PbS) thin films prepared on glass substrates using a cost-effective nebulizer spray pyrolysis (NSP) technique. The substrate temperature varied from 175 °C to 300 °C, with a 25 °C increment for each film. The X-ray diffraction analysis confirmed the formation of a face - centered cubic structure. In addition, the PbS crystallinity was enhanced by raising the substrate temperature, the largest crystallite size (77 nm) was observed at 275 °C deposited film. The development of nanograins and the change in grain size due to the substrate temperature were confirmed by the obtained FESEM images. EDX spectra demonstrated the presence of Pb and S elements in the film deposited at 275 °C. The optical direct bandgap decreased from 1.92 eV to 1.70 eV with increasing substrate temperatures from 175 °C to 275 °C, but significantly increased to 1.75 eV at 300 °C. All the prepared PbS thin films demonstratde an excellent photodetection capabilities. However, the PbS film coated at 275 °C exhibited high Responsivity (7.04 × 10−2 A/W), Detectivity (2.99 × 109 Jones), and External quantum efficiency (16.4 %) in comparison to the other deposited thin films.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信