干涂气相金属氧化物增强锂离子电池SiOx/C阳极循环性能的比较研究

IF 4.7 3区 工程技术 Q2 ELECTROCHEMISTRY
Ana L. Azevedo Costa , Mareike Liebertseder , Tatiana Gambaryan-Roisman , Daniel Esken , Frank Menzel
{"title":"干涂气相金属氧化物增强锂离子电池SiOx/C阳极循环性能的比较研究","authors":"Ana L. Azevedo Costa ,&nbsp;Mareike Liebertseder ,&nbsp;Tatiana Gambaryan-Roisman ,&nbsp;Daniel Esken ,&nbsp;Frank Menzel","doi":"10.1016/j.elecom.2025.107941","DOIUrl":null,"url":null,"abstract":"<div><div>Silicon (Si) is a promising anode material for next-generation lithium-ion batteries (LIBs) due to its high theoretical capacity. However, its practical application is hindered by significant volume changes during cycling, leading to particle pulverization, loss of electrical contact, and rapid capacity fading. To address these challenges, we study the effect of dry particle coating with nanostructured fumed metal oxides (TiO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, MgO, ZrO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, and Al<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>) on enhancing the electrochemical performance of SiO<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span>/C anodes. The dry coating process, a facile and scalable technique, effectively attaches the metal oxide nanoparticles onto the SiO<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span>/C surface, forming a protective layer. The coated anode active materials (AAMs) exhibit improved cycling stability and rate capability compared to the uncoated SiO<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span>/C, with the Al<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>-coated anode demonstrating the most promising overall performance. The effective and uniform distribution of the porous coating acts as a protective layer, reducing side reactions while simultaneously enhancing ion diffusion kinetics and improving electrolyte accessibility. Detailed characterization reveals that the Al<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> coating promotes the controlled formation of a LiF-rich solid electrolyte interphase (SEI) layer, contributing to enhanced ionic conductivity and stability. This study highlights the potential of dry particle coating with different metal oxides as a promising strategy for developing high-performance Si-based anodes for next-generation LIBs.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"177 ","pages":"Article 107941"},"PeriodicalIF":4.7000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparative study of dry-coated fumed metal oxides for enhanced cycling performance of SiOx/C anodes in lithium-ion batteries\",\"authors\":\"Ana L. Azevedo Costa ,&nbsp;Mareike Liebertseder ,&nbsp;Tatiana Gambaryan-Roisman ,&nbsp;Daniel Esken ,&nbsp;Frank Menzel\",\"doi\":\"10.1016/j.elecom.2025.107941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Silicon (Si) is a promising anode material for next-generation lithium-ion batteries (LIBs) due to its high theoretical capacity. However, its practical application is hindered by significant volume changes during cycling, leading to particle pulverization, loss of electrical contact, and rapid capacity fading. To address these challenges, we study the effect of dry particle coating with nanostructured fumed metal oxides (TiO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, MgO, ZrO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, and Al<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>) on enhancing the electrochemical performance of SiO<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span>/C anodes. The dry coating process, a facile and scalable technique, effectively attaches the metal oxide nanoparticles onto the SiO<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span>/C surface, forming a protective layer. The coated anode active materials (AAMs) exhibit improved cycling stability and rate capability compared to the uncoated SiO<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span>/C, with the Al<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>-coated anode demonstrating the most promising overall performance. The effective and uniform distribution of the porous coating acts as a protective layer, reducing side reactions while simultaneously enhancing ion diffusion kinetics and improving electrolyte accessibility. Detailed characterization reveals that the Al<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> coating promotes the controlled formation of a LiF-rich solid electrolyte interphase (SEI) layer, contributing to enhanced ionic conductivity and stability. This study highlights the potential of dry particle coating with different metal oxides as a promising strategy for developing high-performance Si-based anodes for next-generation LIBs.</div></div>\",\"PeriodicalId\":304,\"journal\":{\"name\":\"Electrochemistry Communications\",\"volume\":\"177 \",\"pages\":\"Article 107941\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochemistry Communications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1388248125000803\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248125000803","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

硅(Si)具有较高的理论容量,是下一代锂离子电池(LIBs)极具发展前景的负极材料。然而,它的实际应用受到循环过程中显著的体积变化的阻碍,导致颗粒粉碎,失去电接触,容量迅速衰退。为了解决这些挑战,我们研究了纳米结构气相金属氧化物(TiO2, MgO, ZrO2和Al2O3)的干颗粒涂层对提高SiOx/C阳极电化学性能的影响。干式涂层工艺是一种简单且可扩展的技术,可以有效地将金属氧化物纳米颗粒附着在SiOx/C表面,形成保护层。与未涂覆的SiOx/C相比,涂层阳极活性材料(AAMs)表现出更好的循环稳定性和速率能力,其中al2o3涂层阳极表现出最有希望的整体性能。多孔涂层的有效和均匀分布起到了保护层的作用,减少了副反应,同时增强了离子扩散动力学,提高了电解质的可及性。详细的表征表明,Al2O3涂层促进了富liff固体电解质界面层(SEI)的可控形成,有助于提高离子电导率和稳定性。这项研究强调了不同金属氧化物的干颗粒涂层作为开发下一代锂离子电池高性能硅基阳极的有前途的策略的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A comparative study of dry-coated fumed metal oxides for enhanced cycling performance of SiOx/C anodes in lithium-ion batteries

A comparative study of dry-coated fumed metal oxides for enhanced cycling performance of SiOx/C anodes in lithium-ion batteries
Silicon (Si) is a promising anode material for next-generation lithium-ion batteries (LIBs) due to its high theoretical capacity. However, its practical application is hindered by significant volume changes during cycling, leading to particle pulverization, loss of electrical contact, and rapid capacity fading. To address these challenges, we study the effect of dry particle coating with nanostructured fumed metal oxides (TiO2, MgO, ZrO2, and Al2O3) on enhancing the electrochemical performance of SiOx/C anodes. The dry coating process, a facile and scalable technique, effectively attaches the metal oxide nanoparticles onto the SiOx/C surface, forming a protective layer. The coated anode active materials (AAMs) exhibit improved cycling stability and rate capability compared to the uncoated SiOx/C, with the Al2O3-coated anode demonstrating the most promising overall performance. The effective and uniform distribution of the porous coating acts as a protective layer, reducing side reactions while simultaneously enhancing ion diffusion kinetics and improving electrolyte accessibility. Detailed characterization reveals that the Al2O3 coating promotes the controlled formation of a LiF-rich solid electrolyte interphase (SEI) layer, contributing to enhanced ionic conductivity and stability. This study highlights the potential of dry particle coating with different metal oxides as a promising strategy for developing high-performance Si-based anodes for next-generation LIBs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electrochemistry Communications
Electrochemistry Communications 工程技术-电化学
CiteScore
8.50
自引率
3.70%
发文量
160
审稿时长
1.2 months
期刊介绍: Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信