光谱过饱和:三角形和蝴蝶结

IF 1 3区 数学 Q1 MATHEMATICS
Yongtao Li , Lihua Feng , Yuejian Peng
{"title":"光谱过饱和:三角形和蝴蝶结","authors":"Yongtao Li ,&nbsp;Lihua Feng ,&nbsp;Yuejian Peng","doi":"10.1016/j.ejc.2025.104171","DOIUrl":null,"url":null,"abstract":"<div><div>A classical result of Erdős and Rademacher (1955) demonstrates a fundamental supersaturation phenomenon in extremal combinatorics: every graph on <span><math><mi>n</mi></math></span> vertices with more than <span><math><mrow><mo>⌊</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mn>4</mn><mo>⌋</mo></mrow></math></span> edges contains at least <span><math><mrow><mo>⌊</mo><mi>n</mi><mo>/</mo><mn>2</mn><mo>⌋</mo></mrow></math></span> triangles. Let <span><math><mrow><mi>λ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> be the spectral radius of the adjacency matrix of a graph <span><math><mi>G</mi></math></span>. Recently, Ning and Zhai (2023) proved that every <span><math><mi>n</mi></math></span>-vertex graph <span><math><mi>G</mi></math></span> with <span><math><mrow><mi>λ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><msqrt><mrow><mrow><mo>⌊</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mn>4</mn><mo>⌋</mo></mrow></mrow></msqrt></mrow></math></span> contains at least <span><math><mrow><mrow><mo>⌊</mo><mi>n</mi><mo>/</mo><mn>2</mn><mo>⌋</mo></mrow><mo>−</mo><mn>1</mn></mrow></math></span> triangles, unless <span><math><mi>G</mi></math></span> is a balanced complete bipartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow><mo>,</mo><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow></mrow></msub></math></span>. The aim of this paper is two-fold. Using a different approach which we term the supersaturation-stability method, we prove a stability variant of the Ning–Zhai result by showing that such a graph <span><math><mi>G</mi></math></span> contains at least <span><math><mrow><mi>n</mi><mo>−</mo><mn>3</mn></mrow></math></span> triangles if no vertex lies in all triangles of <span><math><mi>G</mi></math></span>. This bound is the best possible and it could also be viewed as a spectral analogue of a theorem of Xiao and Katona (2021), which guarantees <span><math><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></math></span> triangles under the assumption that <span><math><mrow><mi>e</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>&gt;</mo><mrow><mo>⌊</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mn>4</mn><mo>⌋</mo></mrow></mrow></math></span> and no vertex is in all triangles of <span><math><mi>G</mi></math></span>.</div><div>The second part concerns with the spectral supersaturation for the bowtie, which consists of two triangles sharing a vertex. Erdős, Füredi, Gould and Gunderson (1995) proved that every <span><math><mi>n</mi></math></span>-vertex graph with more than <span><math><mrow><mrow><mo>⌊</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mn>4</mn><mo>⌋</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span> edges contains a bowtie. The spectral supersaturation problem has not been investigated for non-color-critical substructures in graphs with given order. We give the first such result by counting bowties. Let <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow><mo>,</mo><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow></mrow><mrow><mo>+</mo><mn>2</mn></mrow></msubsup></math></span> be the graph obtained from <span><math><msub><mrow><mi>K</mi></mrow><mrow><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow><mo>,</mo><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow></mrow></msub></math></span> by embedding two disjoint edges in the vertex part of size <span><math><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow></math></span>. We show that if <span><math><mrow><mi>n</mi><mo>≥</mo><mn>8</mn><mo>.</mo><mn>8</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span> and <span><math><mrow><mi>λ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mi>λ</mi><mrow><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow><mo>,</mo><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow></mrow><mrow><mo>+</mo><mn>2</mn></mrow></msubsup><mo>)</mo></mrow></mrow></math></span>, then <span><math><mi>G</mi></math></span> has at least <span><math><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow></math></span> bowties, and <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow><mo>,</mo><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow></mrow><mrow><mo>+</mo><mn>2</mn></mrow></msubsup></math></span> is the unique spectral extremal graph. This gives a spectral correspondence of a result of Kang, Makai and Pikhurko (2020). The method developed in our paper could be helpful in establishing the spectral results for counting other substructures, even for non-color-critical graphs.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"128 ","pages":"Article 104171"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral supersaturation: Triangles and bowties\",\"authors\":\"Yongtao Li ,&nbsp;Lihua Feng ,&nbsp;Yuejian Peng\",\"doi\":\"10.1016/j.ejc.2025.104171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A classical result of Erdős and Rademacher (1955) demonstrates a fundamental supersaturation phenomenon in extremal combinatorics: every graph on <span><math><mi>n</mi></math></span> vertices with more than <span><math><mrow><mo>⌊</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mn>4</mn><mo>⌋</mo></mrow></math></span> edges contains at least <span><math><mrow><mo>⌊</mo><mi>n</mi><mo>/</mo><mn>2</mn><mo>⌋</mo></mrow></math></span> triangles. Let <span><math><mrow><mi>λ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> be the spectral radius of the adjacency matrix of a graph <span><math><mi>G</mi></math></span>. Recently, Ning and Zhai (2023) proved that every <span><math><mi>n</mi></math></span>-vertex graph <span><math><mi>G</mi></math></span> with <span><math><mrow><mi>λ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><msqrt><mrow><mrow><mo>⌊</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mn>4</mn><mo>⌋</mo></mrow></mrow></msqrt></mrow></math></span> contains at least <span><math><mrow><mrow><mo>⌊</mo><mi>n</mi><mo>/</mo><mn>2</mn><mo>⌋</mo></mrow><mo>−</mo><mn>1</mn></mrow></math></span> triangles, unless <span><math><mi>G</mi></math></span> is a balanced complete bipartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow><mo>,</mo><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow></mrow></msub></math></span>. The aim of this paper is two-fold. Using a different approach which we term the supersaturation-stability method, we prove a stability variant of the Ning–Zhai result by showing that such a graph <span><math><mi>G</mi></math></span> contains at least <span><math><mrow><mi>n</mi><mo>−</mo><mn>3</mn></mrow></math></span> triangles if no vertex lies in all triangles of <span><math><mi>G</mi></math></span>. This bound is the best possible and it could also be viewed as a spectral analogue of a theorem of Xiao and Katona (2021), which guarantees <span><math><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></math></span> triangles under the assumption that <span><math><mrow><mi>e</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>&gt;</mo><mrow><mo>⌊</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mn>4</mn><mo>⌋</mo></mrow></mrow></math></span> and no vertex is in all triangles of <span><math><mi>G</mi></math></span>.</div><div>The second part concerns with the spectral supersaturation for the bowtie, which consists of two triangles sharing a vertex. Erdős, Füredi, Gould and Gunderson (1995) proved that every <span><math><mi>n</mi></math></span>-vertex graph with more than <span><math><mrow><mrow><mo>⌊</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mn>4</mn><mo>⌋</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span> edges contains a bowtie. The spectral supersaturation problem has not been investigated for non-color-critical substructures in graphs with given order. We give the first such result by counting bowties. Let <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow><mo>,</mo><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow></mrow><mrow><mo>+</mo><mn>2</mn></mrow></msubsup></math></span> be the graph obtained from <span><math><msub><mrow><mi>K</mi></mrow><mrow><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow><mo>,</mo><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow></mrow></msub></math></span> by embedding two disjoint edges in the vertex part of size <span><math><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow></math></span>. We show that if <span><math><mrow><mi>n</mi><mo>≥</mo><mn>8</mn><mo>.</mo><mn>8</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span> and <span><math><mrow><mi>λ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mi>λ</mi><mrow><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow><mo>,</mo><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow></mrow><mrow><mo>+</mo><mn>2</mn></mrow></msubsup><mo>)</mo></mrow></mrow></math></span>, then <span><math><mi>G</mi></math></span> has at least <span><math><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow></math></span> bowties, and <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow><mo>,</mo><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow></mrow><mrow><mo>+</mo><mn>2</mn></mrow></msubsup></math></span> is the unique spectral extremal graph. This gives a spectral correspondence of a result of Kang, Makai and Pikhurko (2020). The method developed in our paper could be helpful in establishing the spectral results for counting other substructures, even for non-color-critical graphs.</div></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"128 \",\"pages\":\"Article 104171\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S019566982500054X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S019566982500054X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Erdős和Rademacher(1955)的一个经典结果证明了极值组合中的一个基本过饱和现象:在n个顶点上有大于⌊n2/4⌋边的每个图包含至少⌊n/2⌋三角形。设λ(G)为图G的邻接矩阵的谱半径。最近,Ning and Zhai(2023)证明了每个λ(G)≥⌊n2/4⌋的n顶点图G至少包含⌊n/2⌋−1个三角形,除非G是一个平衡的完全二部图K≤n2²,⌊n2⌋。本文的目的是双重的。使用一种不同的方法,我们称之为过饱和稳定性方法,我们证明了宁- zhai结果的稳定性变体,证明了这样一个图G包含至少n−3个三角形,如果没有顶点位于G的所有三角形中。这个界是最好的可能,它也可以被视为Xiao和Katona(2021)定理的谱模拟。这保证了在假设e(G)>;⌊n2/4⌋且在G的所有三角形中没有顶点的情况下,有n−2个三角形。第二部分关注由共享一个顶点的两个三角形组成的领结的谱过饱和度。Erdős, f redi, Gould和Gunderson(1995)证明了每个大于⌊n2/4⌋+1条边的n顶点图都包含一个领结。对于给定阶次图中非色临界子结构的光谱过饱和问题,还没有研究过。我们通过计算领结来给出第一个这样的结果。设K≤n2≤,⌊n2≤⌋+2为由K≤n2≤,⌊n2≤,⌋通过在大小为≤n2≤的顶点部分嵌入两条不相交的边得到的图。证明了如果n≥8.8×106且λ(G)≥λ(K≤n2²,⌊n2⌋+2),则G至少有⌊n2⌋结,且K≤n2²,⌊n2⌋+2是唯一谱极值图。这给出了Kang, Makai和Pikhurko(2020)的结果的光谱对应。本文开发的方法可以帮助建立计数其他子结构的光谱结果,甚至对于非颜色临界图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral supersaturation: Triangles and bowties
A classical result of Erdős and Rademacher (1955) demonstrates a fundamental supersaturation phenomenon in extremal combinatorics: every graph on n vertices with more than n2/4 edges contains at least n/2 triangles. Let λ(G) be the spectral radius of the adjacency matrix of a graph G. Recently, Ning and Zhai (2023) proved that every n-vertex graph G with λ(G)n2/4 contains at least n/21 triangles, unless G is a balanced complete bipartite graph Kn2,n2. The aim of this paper is two-fold. Using a different approach which we term the supersaturation-stability method, we prove a stability variant of the Ning–Zhai result by showing that such a graph G contains at least n3 triangles if no vertex lies in all triangles of G. This bound is the best possible and it could also be viewed as a spectral analogue of a theorem of Xiao and Katona (2021), which guarantees n2 triangles under the assumption that e(G)>n2/4 and no vertex is in all triangles of G.
The second part concerns with the spectral supersaturation for the bowtie, which consists of two triangles sharing a vertex. Erdős, Füredi, Gould and Gunderson (1995) proved that every n-vertex graph with more than n2/4+1 edges contains a bowtie. The spectral supersaturation problem has not been investigated for non-color-critical substructures in graphs with given order. We give the first such result by counting bowties. Let Kn2,n2+2 be the graph obtained from Kn2,n2 by embedding two disjoint edges in the vertex part of size n2. We show that if n8.8×106 and λ(G)λ(Kn2,n2+2), then G has at least n2 bowties, and Kn2,n2+2 is the unique spectral extremal graph. This gives a spectral correspondence of a result of Kang, Makai and Pikhurko (2020). The method developed in our paper could be helpful in establishing the spectral results for counting other substructures, even for non-color-critical graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信