{"title":"光谱过饱和:三角形和蝴蝶结","authors":"Yongtao Li , Lihua Feng , Yuejian Peng","doi":"10.1016/j.ejc.2025.104171","DOIUrl":null,"url":null,"abstract":"<div><div>A classical result of Erdős and Rademacher (1955) demonstrates a fundamental supersaturation phenomenon in extremal combinatorics: every graph on <span><math><mi>n</mi></math></span> vertices with more than <span><math><mrow><mo>⌊</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mn>4</mn><mo>⌋</mo></mrow></math></span> edges contains at least <span><math><mrow><mo>⌊</mo><mi>n</mi><mo>/</mo><mn>2</mn><mo>⌋</mo></mrow></math></span> triangles. Let <span><math><mrow><mi>λ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> be the spectral radius of the adjacency matrix of a graph <span><math><mi>G</mi></math></span>. Recently, Ning and Zhai (2023) proved that every <span><math><mi>n</mi></math></span>-vertex graph <span><math><mi>G</mi></math></span> with <span><math><mrow><mi>λ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><msqrt><mrow><mrow><mo>⌊</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mn>4</mn><mo>⌋</mo></mrow></mrow></msqrt></mrow></math></span> contains at least <span><math><mrow><mrow><mo>⌊</mo><mi>n</mi><mo>/</mo><mn>2</mn><mo>⌋</mo></mrow><mo>−</mo><mn>1</mn></mrow></math></span> triangles, unless <span><math><mi>G</mi></math></span> is a balanced complete bipartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow><mo>,</mo><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow></mrow></msub></math></span>. The aim of this paper is two-fold. Using a different approach which we term the supersaturation-stability method, we prove a stability variant of the Ning–Zhai result by showing that such a graph <span><math><mi>G</mi></math></span> contains at least <span><math><mrow><mi>n</mi><mo>−</mo><mn>3</mn></mrow></math></span> triangles if no vertex lies in all triangles of <span><math><mi>G</mi></math></span>. This bound is the best possible and it could also be viewed as a spectral analogue of a theorem of Xiao and Katona (2021), which guarantees <span><math><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></math></span> triangles under the assumption that <span><math><mrow><mi>e</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>></mo><mrow><mo>⌊</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mn>4</mn><mo>⌋</mo></mrow></mrow></math></span> and no vertex is in all triangles of <span><math><mi>G</mi></math></span>.</div><div>The second part concerns with the spectral supersaturation for the bowtie, which consists of two triangles sharing a vertex. Erdős, Füredi, Gould and Gunderson (1995) proved that every <span><math><mi>n</mi></math></span>-vertex graph with more than <span><math><mrow><mrow><mo>⌊</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mn>4</mn><mo>⌋</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span> edges contains a bowtie. The spectral supersaturation problem has not been investigated for non-color-critical substructures in graphs with given order. We give the first such result by counting bowties. Let <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow><mo>,</mo><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow></mrow><mrow><mo>+</mo><mn>2</mn></mrow></msubsup></math></span> be the graph obtained from <span><math><msub><mrow><mi>K</mi></mrow><mrow><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow><mo>,</mo><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow></mrow></msub></math></span> by embedding two disjoint edges in the vertex part of size <span><math><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow></math></span>. We show that if <span><math><mrow><mi>n</mi><mo>≥</mo><mn>8</mn><mo>.</mo><mn>8</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span> and <span><math><mrow><mi>λ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mi>λ</mi><mrow><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow><mo>,</mo><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow></mrow><mrow><mo>+</mo><mn>2</mn></mrow></msubsup><mo>)</mo></mrow></mrow></math></span>, then <span><math><mi>G</mi></math></span> has at least <span><math><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow></math></span> bowties, and <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow><mo>,</mo><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow></mrow><mrow><mo>+</mo><mn>2</mn></mrow></msubsup></math></span> is the unique spectral extremal graph. This gives a spectral correspondence of a result of Kang, Makai and Pikhurko (2020). The method developed in our paper could be helpful in establishing the spectral results for counting other substructures, even for non-color-critical graphs.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"128 ","pages":"Article 104171"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral supersaturation: Triangles and bowties\",\"authors\":\"Yongtao Li , Lihua Feng , Yuejian Peng\",\"doi\":\"10.1016/j.ejc.2025.104171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A classical result of Erdős and Rademacher (1955) demonstrates a fundamental supersaturation phenomenon in extremal combinatorics: every graph on <span><math><mi>n</mi></math></span> vertices with more than <span><math><mrow><mo>⌊</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mn>4</mn><mo>⌋</mo></mrow></math></span> edges contains at least <span><math><mrow><mo>⌊</mo><mi>n</mi><mo>/</mo><mn>2</mn><mo>⌋</mo></mrow></math></span> triangles. Let <span><math><mrow><mi>λ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> be the spectral radius of the adjacency matrix of a graph <span><math><mi>G</mi></math></span>. Recently, Ning and Zhai (2023) proved that every <span><math><mi>n</mi></math></span>-vertex graph <span><math><mi>G</mi></math></span> with <span><math><mrow><mi>λ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><msqrt><mrow><mrow><mo>⌊</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mn>4</mn><mo>⌋</mo></mrow></mrow></msqrt></mrow></math></span> contains at least <span><math><mrow><mrow><mo>⌊</mo><mi>n</mi><mo>/</mo><mn>2</mn><mo>⌋</mo></mrow><mo>−</mo><mn>1</mn></mrow></math></span> triangles, unless <span><math><mi>G</mi></math></span> is a balanced complete bipartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow><mo>,</mo><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow></mrow></msub></math></span>. The aim of this paper is two-fold. Using a different approach which we term the supersaturation-stability method, we prove a stability variant of the Ning–Zhai result by showing that such a graph <span><math><mi>G</mi></math></span> contains at least <span><math><mrow><mi>n</mi><mo>−</mo><mn>3</mn></mrow></math></span> triangles if no vertex lies in all triangles of <span><math><mi>G</mi></math></span>. This bound is the best possible and it could also be viewed as a spectral analogue of a theorem of Xiao and Katona (2021), which guarantees <span><math><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></math></span> triangles under the assumption that <span><math><mrow><mi>e</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>></mo><mrow><mo>⌊</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mn>4</mn><mo>⌋</mo></mrow></mrow></math></span> and no vertex is in all triangles of <span><math><mi>G</mi></math></span>.</div><div>The second part concerns with the spectral supersaturation for the bowtie, which consists of two triangles sharing a vertex. Erdős, Füredi, Gould and Gunderson (1995) proved that every <span><math><mi>n</mi></math></span>-vertex graph with more than <span><math><mrow><mrow><mo>⌊</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mn>4</mn><mo>⌋</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span> edges contains a bowtie. The spectral supersaturation problem has not been investigated for non-color-critical substructures in graphs with given order. We give the first such result by counting bowties. Let <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow><mo>,</mo><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow></mrow><mrow><mo>+</mo><mn>2</mn></mrow></msubsup></math></span> be the graph obtained from <span><math><msub><mrow><mi>K</mi></mrow><mrow><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow><mo>,</mo><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow></mrow></msub></math></span> by embedding two disjoint edges in the vertex part of size <span><math><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow></math></span>. We show that if <span><math><mrow><mi>n</mi><mo>≥</mo><mn>8</mn><mo>.</mo><mn>8</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span> and <span><math><mrow><mi>λ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mi>λ</mi><mrow><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow><mo>,</mo><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow></mrow><mrow><mo>+</mo><mn>2</mn></mrow></msubsup><mo>)</mo></mrow></mrow></math></span>, then <span><math><mi>G</mi></math></span> has at least <span><math><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow></math></span> bowties, and <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow><mo>,</mo><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow></mrow><mrow><mo>+</mo><mn>2</mn></mrow></msubsup></math></span> is the unique spectral extremal graph. This gives a spectral correspondence of a result of Kang, Makai and Pikhurko (2020). The method developed in our paper could be helpful in establishing the spectral results for counting other substructures, even for non-color-critical graphs.</div></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"128 \",\"pages\":\"Article 104171\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S019566982500054X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S019566982500054X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
Erdős和Rademacher(1955)的一个经典结果证明了极值组合中的一个基本过饱和现象:在n个顶点上有大于⌊n2/4⌋边的每个图包含至少⌊n/2⌋三角形。设λ(G)为图G的邻接矩阵的谱半径。最近,Ning and Zhai(2023)证明了每个λ(G)≥⌊n2/4⌋的n顶点图G至少包含⌊n/2⌋−1个三角形,除非G是一个平衡的完全二部图K≤n2²,⌊n2⌋。本文的目的是双重的。使用一种不同的方法,我们称之为过饱和稳定性方法,我们证明了宁- zhai结果的稳定性变体,证明了这样一个图G包含至少n−3个三角形,如果没有顶点位于G的所有三角形中。这个界是最好的可能,它也可以被视为Xiao和Katona(2021)定理的谱模拟。这保证了在假设e(G)>;⌊n2/4⌋且在G的所有三角形中没有顶点的情况下,有n−2个三角形。第二部分关注由共享一个顶点的两个三角形组成的领结的谱过饱和度。Erdős, f redi, Gould和Gunderson(1995)证明了每个大于⌊n2/4⌋+1条边的n顶点图都包含一个领结。对于给定阶次图中非色临界子结构的光谱过饱和问题,还没有研究过。我们通过计算领结来给出第一个这样的结果。设K≤n2≤,⌊n2≤⌋+2为由K≤n2≤,⌊n2≤,⌋通过在大小为≤n2≤的顶点部分嵌入两条不相交的边得到的图。证明了如果n≥8.8×106且λ(G)≥λ(K≤n2²,⌊n2⌋+2),则G至少有⌊n2⌋结,且K≤n2²,⌊n2⌋+2是唯一谱极值图。这给出了Kang, Makai和Pikhurko(2020)的结果的光谱对应。本文开发的方法可以帮助建立计数其他子结构的光谱结果,甚至对于非颜色临界图。
A classical result of Erdős and Rademacher (1955) demonstrates a fundamental supersaturation phenomenon in extremal combinatorics: every graph on vertices with more than edges contains at least triangles. Let be the spectral radius of the adjacency matrix of a graph . Recently, Ning and Zhai (2023) proved that every -vertex graph with contains at least triangles, unless is a balanced complete bipartite graph . The aim of this paper is two-fold. Using a different approach which we term the supersaturation-stability method, we prove a stability variant of the Ning–Zhai result by showing that such a graph contains at least triangles if no vertex lies in all triangles of . This bound is the best possible and it could also be viewed as a spectral analogue of a theorem of Xiao and Katona (2021), which guarantees triangles under the assumption that and no vertex is in all triangles of .
The second part concerns with the spectral supersaturation for the bowtie, which consists of two triangles sharing a vertex. Erdős, Füredi, Gould and Gunderson (1995) proved that every -vertex graph with more than edges contains a bowtie. The spectral supersaturation problem has not been investigated for non-color-critical substructures in graphs with given order. We give the first such result by counting bowties. Let be the graph obtained from by embedding two disjoint edges in the vertex part of size . We show that if and , then has at least bowties, and is the unique spectral extremal graph. This gives a spectral correspondence of a result of Kang, Makai and Pikhurko (2020). The method developed in our paper could be helpful in establishing the spectral results for counting other substructures, even for non-color-critical graphs.
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.