用于提高热性能的纳米增强平板太阳能集热器的技术经济和生命周期分析

IF 8 Q1 ENERGY & FUELS
Shek Rahman , Salah Issa , Zafar Said , Ahmed Amine Hachicha
{"title":"用于提高热性能的纳米增强平板太阳能集热器的技术经济和生命周期分析","authors":"Shek Rahman ,&nbsp;Salah Issa ,&nbsp;Zafar Said ,&nbsp;Ahmed Amine Hachicha","doi":"10.1016/j.nexus.2025.100433","DOIUrl":null,"url":null,"abstract":"<div><div>This study evaluates the performance of flat plate solar collectors (FPSCs) enhanced with water-based Si₃N₄ nanofluids, focusing on thermal efficiency, economic feasibility, and environmental impact. Unlike widely studied Al₂O₃ and TiO₂ nanofluids, Si₃N₄ offers superior thermal conductivity (10–20 W/m·K) and lower density (2.6–3.2 g/cm³), making it a novel, underexplored candidate for FPSCs. Experimental results demonstrate that Si₃N₄ nanofluids at 0.09 % volume fraction achieve a 33 % improvement in thermal conductivity and 8 % enhancement in thermal efficiency compared to conventional water-based systems. The integration of Si₃N₄ reduces the required collector area by 6.1 %, enabling cost savings and compact system designs. Life cycle analysis reveals a 12 % reduction in carbon emissions and a 15 % shorter payback period (5.5 years), underscoring the environmental and economic viability of Si₃N₄ nanofluids. These advancements align with global sustainability goals, particularly SDG 7 (affordable and clean energy) and SDG 13 (climate action), by improving renewable energy technologies and reducing fossil fuel reliance.</div></div>","PeriodicalId":93548,"journal":{"name":"Energy nexus","volume":"18 ","pages":"Article 100433"},"PeriodicalIF":8.0000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Techno-economic and life cycle analysis of a nano-enhanced flat plate solar collector for improved thermal performance\",\"authors\":\"Shek Rahman ,&nbsp;Salah Issa ,&nbsp;Zafar Said ,&nbsp;Ahmed Amine Hachicha\",\"doi\":\"10.1016/j.nexus.2025.100433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study evaluates the performance of flat plate solar collectors (FPSCs) enhanced with water-based Si₃N₄ nanofluids, focusing on thermal efficiency, economic feasibility, and environmental impact. Unlike widely studied Al₂O₃ and TiO₂ nanofluids, Si₃N₄ offers superior thermal conductivity (10–20 W/m·K) and lower density (2.6–3.2 g/cm³), making it a novel, underexplored candidate for FPSCs. Experimental results demonstrate that Si₃N₄ nanofluids at 0.09 % volume fraction achieve a 33 % improvement in thermal conductivity and 8 % enhancement in thermal efficiency compared to conventional water-based systems. The integration of Si₃N₄ reduces the required collector area by 6.1 %, enabling cost savings and compact system designs. Life cycle analysis reveals a 12 % reduction in carbon emissions and a 15 % shorter payback period (5.5 years), underscoring the environmental and economic viability of Si₃N₄ nanofluids. These advancements align with global sustainability goals, particularly SDG 7 (affordable and clean energy) and SDG 13 (climate action), by improving renewable energy technologies and reducing fossil fuel reliance.</div></div>\",\"PeriodicalId\":93548,\"journal\":{\"name\":\"Energy nexus\",\"volume\":\"18 \",\"pages\":\"Article 100433\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy nexus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772427125000749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy nexus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772427125000749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

该研究评估了水基Si₃N₄纳米流体增强的平板太阳能集热器(FPSCs)的性能,重点关注热效率、经济可行性和环境影响。与广泛研究的Al₂O₃和TiO₂纳米流体不同,Si₃N₄具有优异的导热性(10-20 W/m·K)和较低的密度(2.6-3.2 g/cm³),使其成为一种新颖的、尚未开发的FPSCs候选材料。实验结果表明,体积分数为0.09%的Si₃N₄纳米流体与传统水基体系相比,导热系数提高了33%,热效率提高了8%。Si₃N₄的集成将所需的收集器面积减少了6.1%,从而节省了成本并实现了紧凑的系统设计。生命周期分析显示,碳排放量减少了12%,投资回收期缩短了15%(5.5年),强调了Si₃N₄纳米流体在环境和经济上的可行性。通过改进可再生能源技术和减少对化石燃料的依赖,这些进展符合全球可持续发展目标,特别是可持续发展目标7(负担得起的清洁能源)和可持续发展目标13(气候行动)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Techno-economic and life cycle analysis of a nano-enhanced flat plate solar collector for improved thermal performance

Techno-economic and life cycle analysis of a nano-enhanced flat plate solar collector for improved thermal performance
This study evaluates the performance of flat plate solar collectors (FPSCs) enhanced with water-based Si₃N₄ nanofluids, focusing on thermal efficiency, economic feasibility, and environmental impact. Unlike widely studied Al₂O₃ and TiO₂ nanofluids, Si₃N₄ offers superior thermal conductivity (10–20 W/m·K) and lower density (2.6–3.2 g/cm³), making it a novel, underexplored candidate for FPSCs. Experimental results demonstrate that Si₃N₄ nanofluids at 0.09 % volume fraction achieve a 33 % improvement in thermal conductivity and 8 % enhancement in thermal efficiency compared to conventional water-based systems. The integration of Si₃N₄ reduces the required collector area by 6.1 %, enabling cost savings and compact system designs. Life cycle analysis reveals a 12 % reduction in carbon emissions and a 15 % shorter payback period (5.5 years), underscoring the environmental and economic viability of Si₃N₄ nanofluids. These advancements align with global sustainability goals, particularly SDG 7 (affordable and clean energy) and SDG 13 (climate action), by improving renewable energy technologies and reducing fossil fuel reliance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy nexus
Energy nexus Energy (General), Ecological Modelling, Renewable Energy, Sustainability and the Environment, Water Science and Technology, Agricultural and Biological Sciences (General)
CiteScore
7.70
自引率
0.00%
发文量
0
审稿时长
109 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信