CMIP6 gcm对中国历史和未来气温的偏置校正

IF 4.5 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Sihao Wei , Xuejia Wang , Lanya Liu , Liya Qie , Yijia Li , Qi Wang , Tao Wang , Jiayu Wang , Xiaohua Gou , Meixue Yang
{"title":"CMIP6 gcm对中国历史和未来气温的偏置校正","authors":"Sihao Wei ,&nbsp;Xuejia Wang ,&nbsp;Lanya Liu ,&nbsp;Liya Qie ,&nbsp;Yijia Li ,&nbsp;Qi Wang ,&nbsp;Tao Wang ,&nbsp;Jiayu Wang ,&nbsp;Xiaohua Gou ,&nbsp;Meixue Yang","doi":"10.1016/j.atmosres.2025.108193","DOIUrl":null,"url":null,"abstract":"<div><div>The CMIP6 global climate models (GCMs) yield a generally large bias in air temperature simulation over China, necessitating corrections before we can rely on their future projections. In this study, we performed air temperature corrections of 26 CMIP6 GCMs using two methods—bias correction method (BC-correction) and quantile mapping (QM-correction), with the CN05.1 observational data serving as the benchmark. We conducted a comparative assessment of the simulation performance of the CMIP6 GCMs and their multi-model ensemble means (MMEs) before and after corrections, considering both temporal and spatial scales across historical and future periods under multiple shared socioeconomic pathway (SSP) scenarios. The results show that the BC-correction method substantially rectifies the systematic underestimation of annual mean air temperature in CMIP6 GCMs across China, demonstrating superior performance compared to the QM approach, but with varying correction effects observed across different seasons. The MMEs show efficacy in capturing temporal-spatial variation patterns of air temperature recorded by the CN05.1 observation, however, certain discrepancies persist in specific trend magnitudes and locations. Moreover, compared to the original MME, the BC-corrected MME reveals projected enhanced future warming amplitudes across various timeframes and SSPs relative to the baseline period (1995–2014). This study emphasizes that uncorrected GCMs tend to underestimate projected climate warming across China.</div></div>","PeriodicalId":8600,"journal":{"name":"Atmospheric Research","volume":"323 ","pages":"Article 108193"},"PeriodicalIF":4.5000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bias correction of CMIP6 GCMs for historical and future air temperatures across China\",\"authors\":\"Sihao Wei ,&nbsp;Xuejia Wang ,&nbsp;Lanya Liu ,&nbsp;Liya Qie ,&nbsp;Yijia Li ,&nbsp;Qi Wang ,&nbsp;Tao Wang ,&nbsp;Jiayu Wang ,&nbsp;Xiaohua Gou ,&nbsp;Meixue Yang\",\"doi\":\"10.1016/j.atmosres.2025.108193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The CMIP6 global climate models (GCMs) yield a generally large bias in air temperature simulation over China, necessitating corrections before we can rely on their future projections. In this study, we performed air temperature corrections of 26 CMIP6 GCMs using two methods—bias correction method (BC-correction) and quantile mapping (QM-correction), with the CN05.1 observational data serving as the benchmark. We conducted a comparative assessment of the simulation performance of the CMIP6 GCMs and their multi-model ensemble means (MMEs) before and after corrections, considering both temporal and spatial scales across historical and future periods under multiple shared socioeconomic pathway (SSP) scenarios. The results show that the BC-correction method substantially rectifies the systematic underestimation of annual mean air temperature in CMIP6 GCMs across China, demonstrating superior performance compared to the QM approach, but with varying correction effects observed across different seasons. The MMEs show efficacy in capturing temporal-spatial variation patterns of air temperature recorded by the CN05.1 observation, however, certain discrepancies persist in specific trend magnitudes and locations. Moreover, compared to the original MME, the BC-corrected MME reveals projected enhanced future warming amplitudes across various timeframes and SSPs relative to the baseline period (1995–2014). This study emphasizes that uncorrected GCMs tend to underestimate projected climate warming across China.</div></div>\",\"PeriodicalId\":8600,\"journal\":{\"name\":\"Atmospheric Research\",\"volume\":\"323 \",\"pages\":\"Article 108193\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169809525002856\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169809525002856","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

CMIP6全球气候模式(GCMs)对中国的气温模拟产生了普遍较大的偏差,在我们能够依赖其未来预测之前,需要进行修正。本研究以CN05.1观测资料为基准,采用偏差校正法(BC-correction)和分位数映射法(QM-correction)两种方法对26个CMIP6 gcm的气温进行了校正。在多个共享社会经济路径(SSP)情景下,考虑历史和未来时期的时空尺度,对CMIP6 gcm及其多模式集合均值(MMEs)在修正前后的模拟性能进行了比较评估。结果表明,bc -校正方法在很大程度上校正了CMIP6 GCMs对中国年平均气温的系统低估,表现出优于QM方法的效果,但不同季节的校正效果有所不同。MMEs在捕获CN05.1观测记录的气温时空变化模式方面表现出一定的有效性,但在特定趋势量级和位置上存在一定的差异。此外,与原始的MME相比,bc校正的MME揭示了相对于基线期(1995-2014)不同时间范围和ssp的未来增温幅度的预估。本研究强调,未校正的gcm倾向于低估中国的气候变暖预估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bias correction of CMIP6 GCMs for historical and future air temperatures across China
The CMIP6 global climate models (GCMs) yield a generally large bias in air temperature simulation over China, necessitating corrections before we can rely on their future projections. In this study, we performed air temperature corrections of 26 CMIP6 GCMs using two methods—bias correction method (BC-correction) and quantile mapping (QM-correction), with the CN05.1 observational data serving as the benchmark. We conducted a comparative assessment of the simulation performance of the CMIP6 GCMs and their multi-model ensemble means (MMEs) before and after corrections, considering both temporal and spatial scales across historical and future periods under multiple shared socioeconomic pathway (SSP) scenarios. The results show that the BC-correction method substantially rectifies the systematic underestimation of annual mean air temperature in CMIP6 GCMs across China, demonstrating superior performance compared to the QM approach, but with varying correction effects observed across different seasons. The MMEs show efficacy in capturing temporal-spatial variation patterns of air temperature recorded by the CN05.1 observation, however, certain discrepancies persist in specific trend magnitudes and locations. Moreover, compared to the original MME, the BC-corrected MME reveals projected enhanced future warming amplitudes across various timeframes and SSPs relative to the baseline period (1995–2014). This study emphasizes that uncorrected GCMs tend to underestimate projected climate warming across China.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmospheric Research
Atmospheric Research 地学-气象与大气科学
CiteScore
9.40
自引率
10.90%
发文量
460
审稿时长
47 days
期刊介绍: The journal publishes scientific papers (research papers, review articles, letters and notes) dealing with the part of the atmosphere where meteorological events occur. Attention is given to all processes extending from the earth surface to the tropopause, but special emphasis continues to be devoted to the physics of clouds, mesoscale meteorology and air pollution, i.e. atmospheric aerosols; microphysical processes; cloud dynamics and thermodynamics; numerical simulation, climatology, climate change and weather modification.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信