钼酸盐单晶的制备:在超临界CO2辅助下金属离子相互作用和定向吸附的新方案

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xuzhe Wang , Yongqi Wu , Xiaohong Chen , Dewei Liu , Lamei Zhang , Xuezhen Zhai , Mingyuan Li
{"title":"钼酸盐单晶的制备:在超临界CO2辅助下金属离子相互作用和定向吸附的新方案","authors":"Xuzhe Wang ,&nbsp;Yongqi Wu ,&nbsp;Xiaohong Chen ,&nbsp;Dewei Liu ,&nbsp;Lamei Zhang ,&nbsp;Xuezhen Zhai ,&nbsp;Mingyuan Li","doi":"10.1016/j.mseb.2025.118379","DOIUrl":null,"url":null,"abstract":"<div><div>The fabrication of single crystals has always been the fundamental to the development of semiconductor, microelectronics, and the related solid-state science. However, synthesis of large-sized single crystals with anisotropic structures for functional materials remains challenging. In this work, we design a novel method to obtain single crystal molybdate nanostructures, in which it combines the metal ions intercalation into α-MoO<sub>3</sub> crystal structure to form molybdate nanocrystals, and subsequently the efficient oriented attachment (OA) of nanocrystals to form single crystalline molybdate nanostructures. Three typical large-size single crystals as CoMoO<sub>4</sub>, Fe<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub> and ZnMoO<sub>4</sub> have been successfully fabricated. Our study indicates supercritical CO<sub>2</sub> plays a crucial role in the formation process of single crystal molybdate nanostructures no matter for intercalation process or oriented attachment. Further the crystal growth mechanism behind the experiment is explored carefully and stated in detail in this work.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering: B","volume":"319 ","pages":"Article 118379"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of single crystal molybdate: A new protocol of coupling metal ion interaction and oriented-attachment with assistance of supercritical CO2\",\"authors\":\"Xuzhe Wang ,&nbsp;Yongqi Wu ,&nbsp;Xiaohong Chen ,&nbsp;Dewei Liu ,&nbsp;Lamei Zhang ,&nbsp;Xuezhen Zhai ,&nbsp;Mingyuan Li\",\"doi\":\"10.1016/j.mseb.2025.118379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The fabrication of single crystals has always been the fundamental to the development of semiconductor, microelectronics, and the related solid-state science. However, synthesis of large-sized single crystals with anisotropic structures for functional materials remains challenging. In this work, we design a novel method to obtain single crystal molybdate nanostructures, in which it combines the metal ions intercalation into α-MoO<sub>3</sub> crystal structure to form molybdate nanocrystals, and subsequently the efficient oriented attachment (OA) of nanocrystals to form single crystalline molybdate nanostructures. Three typical large-size single crystals as CoMoO<sub>4</sub>, Fe<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub> and ZnMoO<sub>4</sub> have been successfully fabricated. Our study indicates supercritical CO<sub>2</sub> plays a crucial role in the formation process of single crystal molybdate nanostructures no matter for intercalation process or oriented attachment. Further the crystal growth mechanism behind the experiment is explored carefully and stated in detail in this work.</div></div>\",\"PeriodicalId\":18233,\"journal\":{\"name\":\"Materials Science and Engineering: B\",\"volume\":\"319 \",\"pages\":\"Article 118379\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: B\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921510725004039\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: B","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510725004039","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

单晶的制造一直是半导体、微电子和相关固态科学发展的基础。然而,合成具有各向异性结构的功能材料的大尺寸单晶仍然具有挑战性。本文设计了一种获得单晶钼酸盐纳米结构的新方法,将金属离子嵌入α-MoO3晶体结构中形成钼酸盐纳米晶体,然后将纳米晶体的高效取向附着(OA)形成单晶钼酸盐纳米结构。成功制备了CoMoO4、Fe2(MoO4)3和ZnMoO4三种典型的大尺寸单晶。研究表明,无论是嵌层过程还是定向附着过程,超临界CO2在钼酸盐单晶纳米结构的形成过程中都起着至关重要的作用。进一步探讨了实验背后的晶体生长机制,并对其进行了详细的阐述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fabrication of single crystal molybdate: A new protocol of coupling metal ion interaction and oriented-attachment with assistance of supercritical CO2

Fabrication of single crystal molybdate: A new protocol of coupling metal ion interaction and oriented-attachment with assistance of supercritical CO2
The fabrication of single crystals has always been the fundamental to the development of semiconductor, microelectronics, and the related solid-state science. However, synthesis of large-sized single crystals with anisotropic structures for functional materials remains challenging. In this work, we design a novel method to obtain single crystal molybdate nanostructures, in which it combines the metal ions intercalation into α-MoO3 crystal structure to form molybdate nanocrystals, and subsequently the efficient oriented attachment (OA) of nanocrystals to form single crystalline molybdate nanostructures. Three typical large-size single crystals as CoMoO4, Fe2(MoO4)3 and ZnMoO4 have been successfully fabricated. Our study indicates supercritical CO2 plays a crucial role in the formation process of single crystal molybdate nanostructures no matter for intercalation process or oriented attachment. Further the crystal growth mechanism behind the experiment is explored carefully and stated in detail in this work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science and Engineering: B
Materials Science and Engineering: B 工程技术-材料科学:综合
CiteScore
5.60
自引率
2.80%
发文量
481
审稿时长
3.5 months
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信