用物理上有意义的剂量响应曲线确定光激发发光(OSL)测年的等效剂量

IF 1.7 2区 地球科学 Q3 GEOGRAPHY, PHYSICAL
George Kitis , Georgios S. Polymeris , Jun Peng
{"title":"用物理上有意义的剂量响应曲线确定光激发发光(OSL)测年的等效剂量","authors":"George Kitis ,&nbsp;Georgios S. Polymeris ,&nbsp;Jun Peng","doi":"10.1016/j.quageo.2025.101671","DOIUrl":null,"url":null,"abstract":"<div><div>Non-linear dose–response curves are common in many thermoluminescence (TL) and optically stimulated luminescence (OSL) dosimetric applications, especially in TL and OSL dating. In most cases, these calibration curves are characterized by saturating exponential expressions; consequently, the accuracy of equivalent dose <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span> is highly dependent on the specific position along the saturating exponential curve. In the present work, accuracy is estimated through numerical simulations using novel analytical dose–response expressions based on the Lambert <span><math><mi>W</mi></math></span> function. These simulations are subsequently extrapolated to experimental OSL dose–response curves obtained from dating experiments. The <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span> was estimated by solving the new dose–response expressions and the error <span><math><msub><mrow><mi>σ</mi></mrow><mrow><msub><mrow><mi>D</mi></mrow><mrow><mi>e</mi></mrow></msub></mrow></msub></math></span>, arising from the uncertainty of the natural signal, was evaluated through analytical expressions derived using error propagation theory. Finally, an analytical expression was derived for the derivative of the dose–response function, and the accuracy of <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span> correlated with the derivative at the point corresponding to the unknown dose. The newly derived analytical expressions, based on physical models, enable the determination of <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span> in both linear and non-linear regions of the dose response curves (DRC). This model offers a significant advantage over other existing empirical expressions, whose results lack theoretical justification. The present study offers a general and objective method to identify samples potentially affected by <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span> saturation, through direct evaluation of the derivative of the DRC.</div></div>","PeriodicalId":54516,"journal":{"name":"Quaternary Geochronology","volume":"88 ","pages":"Article 101671"},"PeriodicalIF":1.7000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determining equivalent dose for optically stimulated luminescence (OSL) dating with physically meaningful dose response curves\",\"authors\":\"George Kitis ,&nbsp;Georgios S. Polymeris ,&nbsp;Jun Peng\",\"doi\":\"10.1016/j.quageo.2025.101671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Non-linear dose–response curves are common in many thermoluminescence (TL) and optically stimulated luminescence (OSL) dosimetric applications, especially in TL and OSL dating. In most cases, these calibration curves are characterized by saturating exponential expressions; consequently, the accuracy of equivalent dose <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span> is highly dependent on the specific position along the saturating exponential curve. In the present work, accuracy is estimated through numerical simulations using novel analytical dose–response expressions based on the Lambert <span><math><mi>W</mi></math></span> function. These simulations are subsequently extrapolated to experimental OSL dose–response curves obtained from dating experiments. The <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span> was estimated by solving the new dose–response expressions and the error <span><math><msub><mrow><mi>σ</mi></mrow><mrow><msub><mrow><mi>D</mi></mrow><mrow><mi>e</mi></mrow></msub></mrow></msub></math></span>, arising from the uncertainty of the natural signal, was evaluated through analytical expressions derived using error propagation theory. Finally, an analytical expression was derived for the derivative of the dose–response function, and the accuracy of <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span> correlated with the derivative at the point corresponding to the unknown dose. The newly derived analytical expressions, based on physical models, enable the determination of <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span> in both linear and non-linear regions of the dose response curves (DRC). This model offers a significant advantage over other existing empirical expressions, whose results lack theoretical justification. The present study offers a general and objective method to identify samples potentially affected by <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span> saturation, through direct evaluation of the derivative of the DRC.</div></div>\",\"PeriodicalId\":54516,\"journal\":{\"name\":\"Quaternary Geochronology\",\"volume\":\"88 \",\"pages\":\"Article 101671\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quaternary Geochronology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1871101425000226\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quaternary Geochronology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1871101425000226","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

非线性剂量响应曲线在许多热释光和光激发发光剂量学应用中很常见,特别是在热释光和光激发发光测年中。在大多数情况下,这些校准曲线的特征是饱和指数表达式;因此,当量剂量De的精度高度依赖于饱和指数曲线上的特定位置。在目前的工作中,通过使用基于Lambert W函数的新的解析剂量响应表达式的数值模拟来估计精度。这些模拟结果随后被外推到由测年实验获得的实验OSL剂量-响应曲线。通过求解新的剂量响应表达式估计了De,并利用误差传播理论导出的解析表达式对自然信号的不确定性引起的误差σDe进行了计算。最后,导出了剂量-响应函数导数的解析表达式,在未知剂量对应的点上,De的精度与导数相关。新导出的解析表达式,基于物理模型,可以在剂量响应曲线(DRC)的线性和非线性区域确定De。该模型比其他现有的经验表达式具有显著的优势,这些表达式的结果缺乏理论依据。本研究通过直接评估DRC的衍生物,提供了一种通用和客观的方法来识别可能受De饱和度影响的样品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determining equivalent dose for optically stimulated luminescence (OSL) dating with physically meaningful dose response curves
Non-linear dose–response curves are common in many thermoluminescence (TL) and optically stimulated luminescence (OSL) dosimetric applications, especially in TL and OSL dating. In most cases, these calibration curves are characterized by saturating exponential expressions; consequently, the accuracy of equivalent dose De is highly dependent on the specific position along the saturating exponential curve. In the present work, accuracy is estimated through numerical simulations using novel analytical dose–response expressions based on the Lambert W function. These simulations are subsequently extrapolated to experimental OSL dose–response curves obtained from dating experiments. The De was estimated by solving the new dose–response expressions and the error σDe, arising from the uncertainty of the natural signal, was evaluated through analytical expressions derived using error propagation theory. Finally, an analytical expression was derived for the derivative of the dose–response function, and the accuracy of De correlated with the derivative at the point corresponding to the unknown dose. The newly derived analytical expressions, based on physical models, enable the determination of De in both linear and non-linear regions of the dose response curves (DRC). This model offers a significant advantage over other existing empirical expressions, whose results lack theoretical justification. The present study offers a general and objective method to identify samples potentially affected by De saturation, through direct evaluation of the derivative of the DRC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quaternary Geochronology
Quaternary Geochronology 地学-地球化学与地球物理
CiteScore
4.40
自引率
22.20%
发文量
130
审稿时长
20 weeks
期刊介绍: Quaternary Geochronology is an international journal devoted to the publication of the highest-quality, peer-reviewed articles on all aspects of dating methods applicable to the Quaternary Period - the last 2.6 million years of Earth history. Reliable ages are fundamental to place changes in climates, landscapes, flora and fauna - including the evolution and ecological impact of humans - in their correct temporal sequence, and to understand the tempo and mode of geological and biological processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信