从叶片到实验室-布料:空间DNA纳米机器人和二维石墨烯协同作用使甘蔗麻花病的超精确电化学跟踪成为可能

IF 10.7 1区 生物学 Q1 BIOPHYSICS
Qingnian Wu , Yu Ya , Chenchen Jin , Yinxia Zhao , Feiyan Yan , Defen Feng , Ke-Jing Huang , Shengyu Xie , Xuecai Tan
{"title":"从叶片到实验室-布料:空间DNA纳米机器人和二维石墨烯协同作用使甘蔗麻花病的超精确电化学跟踪成为可能","authors":"Qingnian Wu ,&nbsp;Yu Ya ,&nbsp;Chenchen Jin ,&nbsp;Yinxia Zhao ,&nbsp;Feiyan Yan ,&nbsp;Defen Feng ,&nbsp;Ke-Jing Huang ,&nbsp;Shengyu Xie ,&nbsp;Xuecai Tan","doi":"10.1016/j.bios.2025.117548","DOIUrl":null,"url":null,"abstract":"<div><div>As a vital cash crop and bioenergy feedstock, sugarcane plays a pivotal role in global agriculture and renewable energy systems. The emergence of pokkah boeng disease has become a critical threat to sugarcane productivity. Current diagnostic methods face challenges in field-applicable early detection due to time-consuming procedures and insufficient sensitivity. This study pioneers a “Lab-on-Cloth” electrochemical biosensor that synergizes DNA nanorobotics with 2D graphyne for ultra-precise detecting of pathogen. The biosensor integrates three synergistic innovation mechanisms: a spatially confined DNA Walker system enabling programmable strand displacement cascades upon target recognition, sulfur-doped graphyne (S-GDY) nanoarrays providing enhanced electron transfer efficiency and catalytic current density, and a dual-signal readout strategy for self-verifying detection accuracy. The biosensor fabrication involves in fixing of AuNPs/S-GDY heterostructures on flexible carbon cloth, creating a hierarchical 3D conductive network. Upon pathogen DNA binding, the DNA Walker initiates dual strand displacement amplification cycles, generating distinct current responses through potential-resolved signal decoupling. This dual-signal readout achieves an ultra-low limit of detection (16.6 aM, S/N = <em>3</em>) with a dynamic range spanning six orders of magnitude (0.1 fM-10 nM), outperforming conventional qPCR in field tests. This spatial DNA nanorobotics-graphyne synergy establishes a new paradigm for plant disease monitoring, providing real-time phyto-diagnostic capabilities. The technology's cost-effectiveness and operational simplicity position it as a transformative tool for precision agriculture and sustainable bioenergy production.</div></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"283 ","pages":"Article 117548"},"PeriodicalIF":10.7000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From leaf to lab-on-cloth: Spatial DNA nanorobotics and 2D graphyne synergy enable ultra-precise electrochemical tracking of sugarcane pokkah boeng disease\",\"authors\":\"Qingnian Wu ,&nbsp;Yu Ya ,&nbsp;Chenchen Jin ,&nbsp;Yinxia Zhao ,&nbsp;Feiyan Yan ,&nbsp;Defen Feng ,&nbsp;Ke-Jing Huang ,&nbsp;Shengyu Xie ,&nbsp;Xuecai Tan\",\"doi\":\"10.1016/j.bios.2025.117548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As a vital cash crop and bioenergy feedstock, sugarcane plays a pivotal role in global agriculture and renewable energy systems. The emergence of pokkah boeng disease has become a critical threat to sugarcane productivity. Current diagnostic methods face challenges in field-applicable early detection due to time-consuming procedures and insufficient sensitivity. This study pioneers a “Lab-on-Cloth” electrochemical biosensor that synergizes DNA nanorobotics with 2D graphyne for ultra-precise detecting of pathogen. The biosensor integrates three synergistic innovation mechanisms: a spatially confined DNA Walker system enabling programmable strand displacement cascades upon target recognition, sulfur-doped graphyne (S-GDY) nanoarrays providing enhanced electron transfer efficiency and catalytic current density, and a dual-signal readout strategy for self-verifying detection accuracy. The biosensor fabrication involves in fixing of AuNPs/S-GDY heterostructures on flexible carbon cloth, creating a hierarchical 3D conductive network. Upon pathogen DNA binding, the DNA Walker initiates dual strand displacement amplification cycles, generating distinct current responses through potential-resolved signal decoupling. This dual-signal readout achieves an ultra-low limit of detection (16.6 aM, S/N = <em>3</em>) with a dynamic range spanning six orders of magnitude (0.1 fM-10 nM), outperforming conventional qPCR in field tests. This spatial DNA nanorobotics-graphyne synergy establishes a new paradigm for plant disease monitoring, providing real-time phyto-diagnostic capabilities. The technology's cost-effectiveness and operational simplicity position it as a transformative tool for precision agriculture and sustainable bioenergy production.</div></div>\",\"PeriodicalId\":259,\"journal\":{\"name\":\"Biosensors and Bioelectronics\",\"volume\":\"283 \",\"pages\":\"Article 117548\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors and Bioelectronics\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0956566325004221\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956566325004221","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

作为重要的经济作物和生物能源原料,甘蔗在全球农业和可再生能源系统中发挥着关键作用。甘蔗病的出现已成为甘蔗生产力的严重威胁。目前的诊断方法在现场适用的早期检测方面面临挑战,因为程序耗时且灵敏度不足。这项研究开创了一种“Lab-on-Cloth”电化学生物传感器,它将DNA纳米机器人与二维石墨炔协同作用,用于超精确检测病原体。该生物传感器集成了三种协同创新机制:一种空间限制的DNA Walker系统,能够在目标识别时实现可编程链位移级联,硫掺杂石墨烯(S-GDY)纳米阵列提供增强的电子传递效率和催化电流密度,以及一种双信号读出策略,用于自我验证检测准确性。生物传感器的制造涉及将AuNPs/S-GDY异质结构固定在柔性碳布上,创建分层的3D导电网络。在病原体DNA结合后,DNA Walker启动双链位移扩增周期,通过电位分解信号解耦产生不同的电流响应。这种双信号读出实现了超低的检测限(16.6 aM, S/N = 3),动态范围跨越6个数量级(0.1 fM-10 nM),在现场测试中优于传统的qPCR。这种空间DNA纳米机器人-石墨烯协同作用为植物病害监测建立了新的范例,提供了实时植物诊断能力。该技术的成本效益和操作简单性使其成为精准农业和可持续生物能源生产的变革工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From leaf to lab-on-cloth: Spatial DNA nanorobotics and 2D graphyne synergy enable ultra-precise electrochemical tracking of sugarcane pokkah boeng disease
As a vital cash crop and bioenergy feedstock, sugarcane plays a pivotal role in global agriculture and renewable energy systems. The emergence of pokkah boeng disease has become a critical threat to sugarcane productivity. Current diagnostic methods face challenges in field-applicable early detection due to time-consuming procedures and insufficient sensitivity. This study pioneers a “Lab-on-Cloth” electrochemical biosensor that synergizes DNA nanorobotics with 2D graphyne for ultra-precise detecting of pathogen. The biosensor integrates three synergistic innovation mechanisms: a spatially confined DNA Walker system enabling programmable strand displacement cascades upon target recognition, sulfur-doped graphyne (S-GDY) nanoarrays providing enhanced electron transfer efficiency and catalytic current density, and a dual-signal readout strategy for self-verifying detection accuracy. The biosensor fabrication involves in fixing of AuNPs/S-GDY heterostructures on flexible carbon cloth, creating a hierarchical 3D conductive network. Upon pathogen DNA binding, the DNA Walker initiates dual strand displacement amplification cycles, generating distinct current responses through potential-resolved signal decoupling. This dual-signal readout achieves an ultra-low limit of detection (16.6 aM, S/N = 3) with a dynamic range spanning six orders of magnitude (0.1 fM-10 nM), outperforming conventional qPCR in field tests. This spatial DNA nanorobotics-graphyne synergy establishes a new paradigm for plant disease monitoring, providing real-time phyto-diagnostic capabilities. The technology's cost-effectiveness and operational simplicity position it as a transformative tool for precision agriculture and sustainable bioenergy production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biosensors and Bioelectronics
Biosensors and Bioelectronics 工程技术-电化学
CiteScore
20.80
自引率
7.10%
发文量
1006
审稿时长
29 days
期刊介绍: Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信