{"title":"金属银的悬浮网状结构提高了nbt基耦合纳米发电机的发电性能","authors":"Wenlong Xu, Yudong Hou*, Kaibiao Xi, Mupeng Zheng and Mankang Zhu, ","doi":"10.1021/acsami.5c0111310.1021/acsami.5c01113","DOIUrl":null,"url":null,"abstract":"<p >Piezo-pyroelectric coupled nanogenerators (PPCNGs) capable of collecting vibration energy and thermal energy in complex environments are expected to provide a long-term power supply for multifunctional electronic devices. However, the piezoceramics as the core of the PPCNGs are limited in their coupled power generation capabilities due to low thermal conductivity and high internal resistance. In this work, it is proposed to construct Na<sub>0.5</sub>Bi<sub>0.5</sub>TiO<sub>3</sub>–K<sub>0.5</sub>Bi<sub>0.5</sub>TiO<sub>3</sub>/Ag (NBT-KBT/Ag) composite ceramics with a suspended network structure by introducing a low-melting-point metal Ag second phase. The network structure that can serve as a transmission path effectively reduces the scattering of phonons and carriers in the ceramics, improves the transport efficiency, and achieves the dual effects of increasing thermal conductivity and reducing internal resistance in the composite ceramics. And the output power density of PPCNG composed of the optimal components is 736.4 nW/cm<sup>3</sup>, which is 4.7 times that of the unoptimized virgin components. Furthermore, the optimal PPCNG possesses the capability to recognize object information through pressure and temperature sensing. This work reinforces the output characteristics of PPCNGs by constructing a suspended network structure. More importantly, the simple and efficient design strategy of constructing a suspended network structure is expected to be extended to material modification for the application of multifunctional smart electronic devices.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 18","pages":"26892–26900 26892–26900"},"PeriodicalIF":8.2000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metallic Ag with Suspended Network Structure Enhances the Power Generation Performance of NBT-Based Coupled Nanogenerators\",\"authors\":\"Wenlong Xu, Yudong Hou*, Kaibiao Xi, Mupeng Zheng and Mankang Zhu, \",\"doi\":\"10.1021/acsami.5c0111310.1021/acsami.5c01113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Piezo-pyroelectric coupled nanogenerators (PPCNGs) capable of collecting vibration energy and thermal energy in complex environments are expected to provide a long-term power supply for multifunctional electronic devices. However, the piezoceramics as the core of the PPCNGs are limited in their coupled power generation capabilities due to low thermal conductivity and high internal resistance. In this work, it is proposed to construct Na<sub>0.5</sub>Bi<sub>0.5</sub>TiO<sub>3</sub>–K<sub>0.5</sub>Bi<sub>0.5</sub>TiO<sub>3</sub>/Ag (NBT-KBT/Ag) composite ceramics with a suspended network structure by introducing a low-melting-point metal Ag second phase. The network structure that can serve as a transmission path effectively reduces the scattering of phonons and carriers in the ceramics, improves the transport efficiency, and achieves the dual effects of increasing thermal conductivity and reducing internal resistance in the composite ceramics. And the output power density of PPCNG composed of the optimal components is 736.4 nW/cm<sup>3</sup>, which is 4.7 times that of the unoptimized virgin components. Furthermore, the optimal PPCNG possesses the capability to recognize object information through pressure and temperature sensing. This work reinforces the output characteristics of PPCNGs by constructing a suspended network structure. More importantly, the simple and efficient design strategy of constructing a suspended network structure is expected to be extended to material modification for the application of multifunctional smart electronic devices.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 18\",\"pages\":\"26892–26900 26892–26900\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.5c01113\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c01113","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Metallic Ag with Suspended Network Structure Enhances the Power Generation Performance of NBT-Based Coupled Nanogenerators
Piezo-pyroelectric coupled nanogenerators (PPCNGs) capable of collecting vibration energy and thermal energy in complex environments are expected to provide a long-term power supply for multifunctional electronic devices. However, the piezoceramics as the core of the PPCNGs are limited in their coupled power generation capabilities due to low thermal conductivity and high internal resistance. In this work, it is proposed to construct Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3/Ag (NBT-KBT/Ag) composite ceramics with a suspended network structure by introducing a low-melting-point metal Ag second phase. The network structure that can serve as a transmission path effectively reduces the scattering of phonons and carriers in the ceramics, improves the transport efficiency, and achieves the dual effects of increasing thermal conductivity and reducing internal resistance in the composite ceramics. And the output power density of PPCNG composed of the optimal components is 736.4 nW/cm3, which is 4.7 times that of the unoptimized virgin components. Furthermore, the optimal PPCNG possesses the capability to recognize object information through pressure and temperature sensing. This work reinforces the output characteristics of PPCNGs by constructing a suspended network structure. More importantly, the simple and efficient design strategy of constructing a suspended network structure is expected to be extended to material modification for the application of multifunctional smart electronic devices.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.