双级超临界CO2发泡在具有可逆热诱导转化的高性能可重入泡沫中的顺序结构转化

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shaozhe Shi, Xiaohan Wang, Bo Wang, Yishen Zhao, Guangxian Li and Xia Liao*, 
{"title":"双级超临界CO2发泡在具有可逆热诱导转化的高性能可重入泡沫中的顺序结构转化","authors":"Shaozhe Shi,&nbsp;Xiaohan Wang,&nbsp;Bo Wang,&nbsp;Yishen Zhao,&nbsp;Guangxian Li and Xia Liao*,&nbsp;","doi":"10.1021/acsami.5c0361110.1021/acsami.5c03611","DOIUrl":null,"url":null,"abstract":"<p >The controllable design and optimization of porous structures can endow the foam with unique functionalities and expand its application domains. In this work, we propose a dual-stage supercritical carbon dioxide foaming technology that leverages the synergistic effects of the pressure difference inside and outside the cells and the surface tension between the polymer matrix and gas, enabling direct conversion from engineering plastic polymer with a rigid molecular chain to the closed-cell reentrant foam. Using polycarbonate siloxane copolymer (Si-PC) resin as a matrix, we successfully prepared the reentrant concave angle Si-PC foam (R-PCF) with various transformation degrees by adjusting key process parameters in both first and second stages. R-PCF features a unique reversible thermal-induced structural transformation, excellent thermal insulation performance (the final temperature is 68 °C lower than the hot table and 17 °C lower than the Si-PC foam under stable heat source conditions), and chemical resistance. Additionally, the introduction of the reentrant concave angle structure effectively optimizes energy transfer pathways, making the R-PCF have superior energy absorption properties, improving the competitiveness of R-PCF for potential applications in thermal switches, intelligent thermal-drive devices, and protective and thermal management fields.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 18","pages":"27204–27214 27204–27214"},"PeriodicalIF":8.2000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-Stage Supercritical CO2 Foaming for Sequential Structural Conversion in High-Performance Reentrant Foam with Reversible Thermal-Induced Transformation\",\"authors\":\"Shaozhe Shi,&nbsp;Xiaohan Wang,&nbsp;Bo Wang,&nbsp;Yishen Zhao,&nbsp;Guangxian Li and Xia Liao*,&nbsp;\",\"doi\":\"10.1021/acsami.5c0361110.1021/acsami.5c03611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The controllable design and optimization of porous structures can endow the foam with unique functionalities and expand its application domains. In this work, we propose a dual-stage supercritical carbon dioxide foaming technology that leverages the synergistic effects of the pressure difference inside and outside the cells and the surface tension between the polymer matrix and gas, enabling direct conversion from engineering plastic polymer with a rigid molecular chain to the closed-cell reentrant foam. Using polycarbonate siloxane copolymer (Si-PC) resin as a matrix, we successfully prepared the reentrant concave angle Si-PC foam (R-PCF) with various transformation degrees by adjusting key process parameters in both first and second stages. R-PCF features a unique reversible thermal-induced structural transformation, excellent thermal insulation performance (the final temperature is 68 °C lower than the hot table and 17 °C lower than the Si-PC foam under stable heat source conditions), and chemical resistance. Additionally, the introduction of the reentrant concave angle structure effectively optimizes energy transfer pathways, making the R-PCF have superior energy absorption properties, improving the competitiveness of R-PCF for potential applications in thermal switches, intelligent thermal-drive devices, and protective and thermal management fields.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 18\",\"pages\":\"27204–27214 27204–27214\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.5c03611\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c03611","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

多孔结构的可控设计和优化可以赋予泡沫材料独特的功能,拓展其应用领域。在这项工作中,我们提出了一种双级超临界二氧化碳发泡技术,该技术利用细胞内外压力差和聚合物基质与气体之间的表面张力的协同效应,使具有刚性分子链的工程塑料聚合物直接转化为闭孔可重入泡沫。以聚碳酸酯硅氧烷共聚物(Si-PC)树脂为基体,通过调整一、二阶段的关键工艺参数,成功制备了相变程度不同的可入式凹角Si-PC泡沫塑料(R-PCF)。R-PCF具有独特的可逆热致结构转变,优异的隔热性能(在稳定热源条件下,最终温度比热台低68℃,比Si-PC泡沫低17℃),耐化学性好。此外,可入式凹角结构的引入有效地优化了能量传递途径,使R-PCF具有优越的能量吸收性能,提高了R-PCF在热开关、智能热驱动器件以及保护和热管理领域的潜在应用竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dual-Stage Supercritical CO2 Foaming for Sequential Structural Conversion in High-Performance Reentrant Foam with Reversible Thermal-Induced Transformation

Dual-Stage Supercritical CO2 Foaming for Sequential Structural Conversion in High-Performance Reentrant Foam with Reversible Thermal-Induced Transformation

The controllable design and optimization of porous structures can endow the foam with unique functionalities and expand its application domains. In this work, we propose a dual-stage supercritical carbon dioxide foaming technology that leverages the synergistic effects of the pressure difference inside and outside the cells and the surface tension between the polymer matrix and gas, enabling direct conversion from engineering plastic polymer with a rigid molecular chain to the closed-cell reentrant foam. Using polycarbonate siloxane copolymer (Si-PC) resin as a matrix, we successfully prepared the reentrant concave angle Si-PC foam (R-PCF) with various transformation degrees by adjusting key process parameters in both first and second stages. R-PCF features a unique reversible thermal-induced structural transformation, excellent thermal insulation performance (the final temperature is 68 °C lower than the hot table and 17 °C lower than the Si-PC foam under stable heat source conditions), and chemical resistance. Additionally, the introduction of the reentrant concave angle structure effectively optimizes energy transfer pathways, making the R-PCF have superior energy absorption properties, improving the competitiveness of R-PCF for potential applications in thermal switches, intelligent thermal-drive devices, and protective and thermal management fields.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信