Michael Shao Min Ho, Alycia Zi Ting Lim, Yujie Ke, Wei Wei Loh, Xin Ting Zheng, Le Yang, Zhaogang Dong, Fuke Wang, Jason Y. C. Lim and Yuwei Hu*,
{"title":"级联DNA结构转变使刺激反应水凝胶成为可能","authors":"Michael Shao Min Ho, Alycia Zi Ting Lim, Yujie Ke, Wei Wei Loh, Xin Ting Zheng, Le Yang, Zhaogang Dong, Fuke Wang, Jason Y. C. Lim and Yuwei Hu*, ","doi":"10.1021/acsami.5c0158110.1021/acsami.5c01581","DOIUrl":null,"url":null,"abstract":"<p >Cascade interactions are fundamental to enzyme catalysis and cellular activities, enabling dynamic and adaptive responses to environmental stimuli. DNA-based cascade systems have been widely employed to mimic biological processes, such as immune responses and DNAzyme catalysis, achieved mainly through the hybridization interaction. Herein, we present a cascade DNA system involving single-stranded sequences, noncanonical cofactor-bridged duplexes, and canonical duplexes to construct and dissociate hydrogel matrices. In this work, thymine-rich oligonucleotides (T-strands) exist as single-stranded random coils in a buffer at pH 7.2. Upon the introduction of a low-molecular-weight cofactor, melamine (MA), a supramolecular noncanonical configuration, termed the T-MA-T duplex, is formed. Subsequent addition of adenine-rich oligonucleotides (A-strands) to the system leads to the replacement of MA cofactors and the formation of more energetically favorable canonical A-T duplex structures. These consecutive structural transitions are further utilized as dynamic bridging elements in stimuli-responsive DNA hydrogels, facilitating liquid–hydrogel–liquid phase transitions. Moreover, we demonstrate precisely controlled release profiles of doxorubicin from the DNA hydrogel. This approach, leveraging both noncanonical and canonical DNA configurations in triggered cascade structural transitions, opens avenues for developing molecular switches, electronic nanodevices, adaptive materials, and other advanced applications.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 18","pages":"27116–27125 27116–27125"},"PeriodicalIF":8.2000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cascade DNA Structural Transitions Enable Stimuli-Responsive Hydrogels\",\"authors\":\"Michael Shao Min Ho, Alycia Zi Ting Lim, Yujie Ke, Wei Wei Loh, Xin Ting Zheng, Le Yang, Zhaogang Dong, Fuke Wang, Jason Y. C. Lim and Yuwei Hu*, \",\"doi\":\"10.1021/acsami.5c0158110.1021/acsami.5c01581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Cascade interactions are fundamental to enzyme catalysis and cellular activities, enabling dynamic and adaptive responses to environmental stimuli. DNA-based cascade systems have been widely employed to mimic biological processes, such as immune responses and DNAzyme catalysis, achieved mainly through the hybridization interaction. Herein, we present a cascade DNA system involving single-stranded sequences, noncanonical cofactor-bridged duplexes, and canonical duplexes to construct and dissociate hydrogel matrices. In this work, thymine-rich oligonucleotides (T-strands) exist as single-stranded random coils in a buffer at pH 7.2. Upon the introduction of a low-molecular-weight cofactor, melamine (MA), a supramolecular noncanonical configuration, termed the T-MA-T duplex, is formed. Subsequent addition of adenine-rich oligonucleotides (A-strands) to the system leads to the replacement of MA cofactors and the formation of more energetically favorable canonical A-T duplex structures. These consecutive structural transitions are further utilized as dynamic bridging elements in stimuli-responsive DNA hydrogels, facilitating liquid–hydrogel–liquid phase transitions. Moreover, we demonstrate precisely controlled release profiles of doxorubicin from the DNA hydrogel. This approach, leveraging both noncanonical and canonical DNA configurations in triggered cascade structural transitions, opens avenues for developing molecular switches, electronic nanodevices, adaptive materials, and other advanced applications.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 18\",\"pages\":\"27116–27125 27116–27125\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.5c01581\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c01581","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Cascade DNA Structural Transitions Enable Stimuli-Responsive Hydrogels
Cascade interactions are fundamental to enzyme catalysis and cellular activities, enabling dynamic and adaptive responses to environmental stimuli. DNA-based cascade systems have been widely employed to mimic biological processes, such as immune responses and DNAzyme catalysis, achieved mainly through the hybridization interaction. Herein, we present a cascade DNA system involving single-stranded sequences, noncanonical cofactor-bridged duplexes, and canonical duplexes to construct and dissociate hydrogel matrices. In this work, thymine-rich oligonucleotides (T-strands) exist as single-stranded random coils in a buffer at pH 7.2. Upon the introduction of a low-molecular-weight cofactor, melamine (MA), a supramolecular noncanonical configuration, termed the T-MA-T duplex, is formed. Subsequent addition of adenine-rich oligonucleotides (A-strands) to the system leads to the replacement of MA cofactors and the formation of more energetically favorable canonical A-T duplex structures. These consecutive structural transitions are further utilized as dynamic bridging elements in stimuli-responsive DNA hydrogels, facilitating liquid–hydrogel–liquid phase transitions. Moreover, we demonstrate precisely controlled release profiles of doxorubicin from the DNA hydrogel. This approach, leveraging both noncanonical and canonical DNA configurations in triggered cascade structural transitions, opens avenues for developing molecular switches, electronic nanodevices, adaptive materials, and other advanced applications.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.