{"title":"简单序列重复及其扩展:在植物发育、环境响应和适应中的作用","authors":"Sridevi Sureshkumar, Aaryan Chhabra, Ya-Long Guo, Sureshkumar Balasubramanian","doi":"10.1111/nph.70173","DOIUrl":null,"url":null,"abstract":"Repetitive DNA is a feature of all organisms, ranging from archaea and plants to humans. DNA repeats can be seen both in coding and in noncoding regions of the genome. Due to the recurring nature of the sequences, simple DNA repeats tend to be more prone to errors during replication and repair, resulting in variability in their unit length. This feature of simple sequence repeats led to their use as molecular markers for mapping traits in diverse organisms. Advances in genomics, and the ever-reducing costs of genome sequencing have empowered us to assess the functional impacts of DNA repeats. The variability in repeat lengths can cause phenotypic differences depending on where they are present in the genome. Variability in the repeat length in coding regions of genes results in poly amino acid stretches that appear to interfere with protein function, including the perturbation of protein–protein interactions with diverse phenotypic impacts. These are often common allelic variations that can significantly impact evolutionary dynamics. In extreme situations, repeats can undergo massive expansions and appear as outliers. Repeat expansions underlie several genetic defects in plants to diseases in humans. This review systematically analyses tandem DNA repeats in plants, their role in development and environmental response and adaptation in plants. We identify and synthesise emerging themes, differentiate repeat length variability and repeat expansions, and argue that many repeat-associated phenotypes in plants are yet to be discovered. We emphasise the underexplored nature and immense potential of this area of research, particularly in plants, and suggest ways in which this can be achieved and how it might contribute to evolution and agricultural productivity.","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"137 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simple sequence repeats and their expansions: role in plant development, environmental response and adaptation\",\"authors\":\"Sridevi Sureshkumar, Aaryan Chhabra, Ya-Long Guo, Sureshkumar Balasubramanian\",\"doi\":\"10.1111/nph.70173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Repetitive DNA is a feature of all organisms, ranging from archaea and plants to humans. DNA repeats can be seen both in coding and in noncoding regions of the genome. Due to the recurring nature of the sequences, simple DNA repeats tend to be more prone to errors during replication and repair, resulting in variability in their unit length. This feature of simple sequence repeats led to their use as molecular markers for mapping traits in diverse organisms. Advances in genomics, and the ever-reducing costs of genome sequencing have empowered us to assess the functional impacts of DNA repeats. The variability in repeat lengths can cause phenotypic differences depending on where they are present in the genome. Variability in the repeat length in coding regions of genes results in poly amino acid stretches that appear to interfere with protein function, including the perturbation of protein–protein interactions with diverse phenotypic impacts. These are often common allelic variations that can significantly impact evolutionary dynamics. In extreme situations, repeats can undergo massive expansions and appear as outliers. Repeat expansions underlie several genetic defects in plants to diseases in humans. This review systematically analyses tandem DNA repeats in plants, their role in development and environmental response and adaptation in plants. We identify and synthesise emerging themes, differentiate repeat length variability and repeat expansions, and argue that many repeat-associated phenotypes in plants are yet to be discovered. We emphasise the underexplored nature and immense potential of this area of research, particularly in plants, and suggest ways in which this can be achieved and how it might contribute to evolution and agricultural productivity.\",\"PeriodicalId\":214,\"journal\":{\"name\":\"New Phytologist\",\"volume\":\"137 1\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Phytologist\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/nph.70173\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.70173","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Simple sequence repeats and their expansions: role in plant development, environmental response and adaptation
Repetitive DNA is a feature of all organisms, ranging from archaea and plants to humans. DNA repeats can be seen both in coding and in noncoding regions of the genome. Due to the recurring nature of the sequences, simple DNA repeats tend to be more prone to errors during replication and repair, resulting in variability in their unit length. This feature of simple sequence repeats led to their use as molecular markers for mapping traits in diverse organisms. Advances in genomics, and the ever-reducing costs of genome sequencing have empowered us to assess the functional impacts of DNA repeats. The variability in repeat lengths can cause phenotypic differences depending on where they are present in the genome. Variability in the repeat length in coding regions of genes results in poly amino acid stretches that appear to interfere with protein function, including the perturbation of protein–protein interactions with diverse phenotypic impacts. These are often common allelic variations that can significantly impact evolutionary dynamics. In extreme situations, repeats can undergo massive expansions and appear as outliers. Repeat expansions underlie several genetic defects in plants to diseases in humans. This review systematically analyses tandem DNA repeats in plants, their role in development and environmental response and adaptation in plants. We identify and synthesise emerging themes, differentiate repeat length variability and repeat expansions, and argue that many repeat-associated phenotypes in plants are yet to be discovered. We emphasise the underexplored nature and immense potential of this area of research, particularly in plants, and suggest ways in which this can be achieved and how it might contribute to evolution and agricultural productivity.
期刊介绍:
New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.