Ziang Chen, Zhoushilin Ruan, Shenlong Jiang, Qun Zhang, Yi Luo
{"title":"基于精细有机阳离子工程的二维有机-无机杂化钙钛矿高安全高效信息加解密","authors":"Ziang Chen, Zhoushilin Ruan, Shenlong Jiang, Qun Zhang, Yi Luo","doi":"10.1002/anie.202504327","DOIUrl":null,"url":null,"abstract":"Optical encryption based on stimuli-responsive luminescence (SRL) materials has received enormous interest in the field of information security. Metal–halide perovskites, as a newly emerging SRL material, have shown great potential for confidential information encryption/decryption (InfoED) applications. However, it is rather challenging to ensure high security and achieve high readout efficiency in perovskite SRL-based InfoED. Herein, we present a unique InfoED strategy using two-dimensional hybrid organic–inorganic perovskites via delicate organic-cation engineering, benefiting from the high contrast and quick response of their photoluminescence behaviors. Indistinguishably encrypted information can be efficiently decrypted through triple-key implementation (i.e., ultraviolet-light irradiation, temperature control, and narrow-bandpass filtering) that operates in multiple switching modes, enabling us to demonstrate extremely high security by adopting dot-matrix patterning scenarios that are virtually uncrackable. As a proof of principle, a simple 2 × 2 patterning can yield a code dictionary with random variants as high as ~10^{47}, which will take as long as ~10^{22} years to crack using the hitherto fastest supercomputer El Capitan. Our perovskite SRL-based InfoED strategy provides a promising solution for information security based on optical encryption.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"16 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Security and High-Efficiency Information Encryption/Decryption Based on Two-Dimensional Hybrid Organic–Inorganic Perovskites via Delicate Organic-Cation Engineering\",\"authors\":\"Ziang Chen, Zhoushilin Ruan, Shenlong Jiang, Qun Zhang, Yi Luo\",\"doi\":\"10.1002/anie.202504327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optical encryption based on stimuli-responsive luminescence (SRL) materials has received enormous interest in the field of information security. Metal–halide perovskites, as a newly emerging SRL material, have shown great potential for confidential information encryption/decryption (InfoED) applications. However, it is rather challenging to ensure high security and achieve high readout efficiency in perovskite SRL-based InfoED. Herein, we present a unique InfoED strategy using two-dimensional hybrid organic–inorganic perovskites via delicate organic-cation engineering, benefiting from the high contrast and quick response of their photoluminescence behaviors. Indistinguishably encrypted information can be efficiently decrypted through triple-key implementation (i.e., ultraviolet-light irradiation, temperature control, and narrow-bandpass filtering) that operates in multiple switching modes, enabling us to demonstrate extremely high security by adopting dot-matrix patterning scenarios that are virtually uncrackable. As a proof of principle, a simple 2 × 2 patterning can yield a code dictionary with random variants as high as ~10^{47}, which will take as long as ~10^{22} years to crack using the hitherto fastest supercomputer El Capitan. Our perovskite SRL-based InfoED strategy provides a promising solution for information security based on optical encryption.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202504327\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202504327","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
High-Security and High-Efficiency Information Encryption/Decryption Based on Two-Dimensional Hybrid Organic–Inorganic Perovskites via Delicate Organic-Cation Engineering
Optical encryption based on stimuli-responsive luminescence (SRL) materials has received enormous interest in the field of information security. Metal–halide perovskites, as a newly emerging SRL material, have shown great potential for confidential information encryption/decryption (InfoED) applications. However, it is rather challenging to ensure high security and achieve high readout efficiency in perovskite SRL-based InfoED. Herein, we present a unique InfoED strategy using two-dimensional hybrid organic–inorganic perovskites via delicate organic-cation engineering, benefiting from the high contrast and quick response of their photoluminescence behaviors. Indistinguishably encrypted information can be efficiently decrypted through triple-key implementation (i.e., ultraviolet-light irradiation, temperature control, and narrow-bandpass filtering) that operates in multiple switching modes, enabling us to demonstrate extremely high security by adopting dot-matrix patterning scenarios that are virtually uncrackable. As a proof of principle, a simple 2 × 2 patterning can yield a code dictionary with random variants as high as ~10^{47}, which will take as long as ~10^{22} years to crack using the hitherto fastest supercomputer El Capitan. Our perovskite SRL-based InfoED strategy provides a promising solution for information security based on optical encryption.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.