Vasily Panferov, Nikita Ivanov, Wenjun Zhang, Sihan Wang, Juewen Liu
{"title":"利用纳米酶的热稳定性进行焦耳加热以去除横向流动分析中的背景过氧化物酶活性","authors":"Vasily Panferov, Nikita Ivanov, Wenjun Zhang, Sihan Wang, Juewen Liu","doi":"10.1021/acssensors.5c00990","DOIUrl":null,"url":null,"abstract":"Lateral flow assays (LFAs) are essential for point-of-care testing. The use of peroxidase-mimicking nanozymes as catalytic labels is an actively developing direction in LFA, primarily focused on enhancing sensitivity. However, endogenous peroxidases, naturally present in various samples, can interfere with nanozyme signal amplification, leading to a high background signal and making visual detection more challenging. The issue of endogenous peroxidases is particularly significant for LFAs as wash-free biosensors. In this study, we showcase the remarkable thermostability of nanozymes in contrast to enzymes, applied to the analytically relevant use of lateral flow assays for the detection of aflatoxin B1. By employing Joule heating in a portable battery-powered device, the test strips were rapidly heated to 75–80 °C after completing the conventional LFA process. This heating caused thermal denaturation of endogenous peroxidases without affecting the Au@Pt nanozymes. As a result, substrate oxidation on the test strip was carried out solely by the Au@Pt nanozymes, which reduced background noise and improved the limit of detection by a factor of 3.5 compared to the assay without heating.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"77 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilizing the Thermostability of Nanozymes for Joule Heating to Remove Background Peroxidase Activities in Lateral Flow Assays\",\"authors\":\"Vasily Panferov, Nikita Ivanov, Wenjun Zhang, Sihan Wang, Juewen Liu\",\"doi\":\"10.1021/acssensors.5c00990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lateral flow assays (LFAs) are essential for point-of-care testing. The use of peroxidase-mimicking nanozymes as catalytic labels is an actively developing direction in LFA, primarily focused on enhancing sensitivity. However, endogenous peroxidases, naturally present in various samples, can interfere with nanozyme signal amplification, leading to a high background signal and making visual detection more challenging. The issue of endogenous peroxidases is particularly significant for LFAs as wash-free biosensors. In this study, we showcase the remarkable thermostability of nanozymes in contrast to enzymes, applied to the analytically relevant use of lateral flow assays for the detection of aflatoxin B1. By employing Joule heating in a portable battery-powered device, the test strips were rapidly heated to 75–80 °C after completing the conventional LFA process. This heating caused thermal denaturation of endogenous peroxidases without affecting the Au@Pt nanozymes. As a result, substrate oxidation on the test strip was carried out solely by the Au@Pt nanozymes, which reduced background noise and improved the limit of detection by a factor of 3.5 compared to the assay without heating.\",\"PeriodicalId\":24,\"journal\":{\"name\":\"ACS Sensors\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sensors\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acssensors.5c00990\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.5c00990","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Utilizing the Thermostability of Nanozymes for Joule Heating to Remove Background Peroxidase Activities in Lateral Flow Assays
Lateral flow assays (LFAs) are essential for point-of-care testing. The use of peroxidase-mimicking nanozymes as catalytic labels is an actively developing direction in LFA, primarily focused on enhancing sensitivity. However, endogenous peroxidases, naturally present in various samples, can interfere with nanozyme signal amplification, leading to a high background signal and making visual detection more challenging. The issue of endogenous peroxidases is particularly significant for LFAs as wash-free biosensors. In this study, we showcase the remarkable thermostability of nanozymes in contrast to enzymes, applied to the analytically relevant use of lateral flow assays for the detection of aflatoxin B1. By employing Joule heating in a portable battery-powered device, the test strips were rapidly heated to 75–80 °C after completing the conventional LFA process. This heating caused thermal denaturation of endogenous peroxidases without affecting the Au@Pt nanozymes. As a result, substrate oxidation on the test strip was carried out solely by the Au@Pt nanozymes, which reduced background noise and improved the limit of detection by a factor of 3.5 compared to the assay without heating.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.