Mengyun Peng, Qiwei Peng, Wei Li, Xiaochun Chen, Qipeng Yan, Xia Wu, Mingxing Wu, Dan Yuan, He Song, Junfeng Shi
{"title":"姜苷R1自组装的原子性质及其抗真菌作用","authors":"Mengyun Peng, Qiwei Peng, Wei Li, Xiaochun Chen, Qipeng Yan, Xia Wu, Mingxing Wu, Dan Yuan, He Song, Junfeng Shi","doi":"10.1002/adma.202503283","DOIUrl":null,"url":null,"abstract":"<p>Natural products are a crucial resource for drug discovery, but poor understanding of the molecular-scale mechanisms of their self-assembly into soluble, bioavailable hydrogels limits their applications and therapeutic potential. It is demonstrated that Zingibroside R1 (ZR1), derived from Panax notoginseng, undergoes spontaneous self-assemble into a hydrogel comprising helical nanofibrils with potent antifungal activity lacking in its monomeric state. Cryogenic electron microscopy (cryo-EM) revealed an intricate hydrogen-bonding network that facilitates ZR1 nanofibril formation, characterized by a hydrophobic core and hydrophilic exterior architecture, which underpin its binding activity with cell wall in the vulvovaginal candidiasis (VVC) pathogen, <i>C. albicans</i>. The hydrogen-bonding interface between ZR1 gel and glucan compromises membrane integrity, inhibiting <i>C. albicans</i> proliferation in vitro and in VVC model mice in vivo. ZR1 gel could also deliver probiotic <i>Lactobacillus</i>, synergistically inhibiting VVC and restoring the vaginal microenvironment. This study advances the mechanistic understanding of ZR1's structure-function relationships, offering valuable insights into the rational design and therapeutic optimization of natural product-based hydrogels.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 26","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomic Insights Into Self-Assembly of Zingibroside R1 and its Therapeutic Action Against Fungal Diseases\",\"authors\":\"Mengyun Peng, Qiwei Peng, Wei Li, Xiaochun Chen, Qipeng Yan, Xia Wu, Mingxing Wu, Dan Yuan, He Song, Junfeng Shi\",\"doi\":\"10.1002/adma.202503283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Natural products are a crucial resource for drug discovery, but poor understanding of the molecular-scale mechanisms of their self-assembly into soluble, bioavailable hydrogels limits their applications and therapeutic potential. It is demonstrated that Zingibroside R1 (ZR1), derived from Panax notoginseng, undergoes spontaneous self-assemble into a hydrogel comprising helical nanofibrils with potent antifungal activity lacking in its monomeric state. Cryogenic electron microscopy (cryo-EM) revealed an intricate hydrogen-bonding network that facilitates ZR1 nanofibril formation, characterized by a hydrophobic core and hydrophilic exterior architecture, which underpin its binding activity with cell wall in the vulvovaginal candidiasis (VVC) pathogen, <i>C. albicans</i>. The hydrogen-bonding interface between ZR1 gel and glucan compromises membrane integrity, inhibiting <i>C. albicans</i> proliferation in vitro and in VVC model mice in vivo. ZR1 gel could also deliver probiotic <i>Lactobacillus</i>, synergistically inhibiting VVC and restoring the vaginal microenvironment. This study advances the mechanistic understanding of ZR1's structure-function relationships, offering valuable insights into the rational design and therapeutic optimization of natural product-based hydrogels.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"37 26\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adma.202503283\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202503283","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Atomic Insights Into Self-Assembly of Zingibroside R1 and its Therapeutic Action Against Fungal Diseases
Natural products are a crucial resource for drug discovery, but poor understanding of the molecular-scale mechanisms of their self-assembly into soluble, bioavailable hydrogels limits their applications and therapeutic potential. It is demonstrated that Zingibroside R1 (ZR1), derived from Panax notoginseng, undergoes spontaneous self-assemble into a hydrogel comprising helical nanofibrils with potent antifungal activity lacking in its monomeric state. Cryogenic electron microscopy (cryo-EM) revealed an intricate hydrogen-bonding network that facilitates ZR1 nanofibril formation, characterized by a hydrophobic core and hydrophilic exterior architecture, which underpin its binding activity with cell wall in the vulvovaginal candidiasis (VVC) pathogen, C. albicans. The hydrogen-bonding interface between ZR1 gel and glucan compromises membrane integrity, inhibiting C. albicans proliferation in vitro and in VVC model mice in vivo. ZR1 gel could also deliver probiotic Lactobacillus, synergistically inhibiting VVC and restoring the vaginal microenvironment. This study advances the mechanistic understanding of ZR1's structure-function relationships, offering valuable insights into the rational design and therapeutic optimization of natural product-based hydrogels.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.