Katelyn A. Anderson , Uriel Garza-Rubalcava , Mark A. Widdowson , Eric J. Suchomel , Natalie L. Cápiro , Kurt D. Pennell
{"title":"多孔介质中顺式-1,2-二氯乙烯自然衰减的吸附-解吸过程","authors":"Katelyn A. Anderson , Uriel Garza-Rubalcava , Mark A. Widdowson , Eric J. Suchomel , Natalie L. Cápiro , Kurt D. Pennell","doi":"10.1016/j.jhazmat.2025.138500","DOIUrl":null,"url":null,"abstract":"<div><div>Monitored natural attenuation (MNA) is widely used to manage groundwater plumes with persistent chlorinated solvents exceeding regulatory standards. In heterogeneous aquifers, accumulation and release of these contaminants can impact MNA's effectiveness. Research often focuses on tetrachloroethene (PCE) and trichloroethene (TCE), but incomplete reductive dichlorination can lead to <em>cis</em>-1,2-dichloroethene (DCE) accumulation. This study investigates rate-limited sorption-desorption processes governing DCE release from lower-permeability media. Batch reactor studies with two soils established equilibrium linear distribution coefficients (K<sub>D</sub>) of 0.15 mL/g and 0.25 mL/g. Column transport studies were then completed using the same soils at two flow rates with flow interruptions to assess rate-limited desorption. A numerical simulator with a “two-site” sorption model was used to fit the effluent concentration data, yielding parameters for the fraction of sorption sites at instantaneous equilibrium (<em>f</em>) and the rate of sorption for time-dependent sites (<em>k</em>) ranging from 0.2 to 0.6 and 0.4–2 1/day, respectively. Soils with small <em>f</em> and <em>k</em> exhibit prolonged DCE release, which can benefit MNA at sites with an active DCE-to-ethene dechlorinating microbial community. These persistent, low concentrations of DCE can support microbial reductive dichlorination by providing sufficient residence time for the complete biodegradation to non-toxic ethene. This work emphasizes the importance of developing conceptual site models that capture sorption-desorption processes contributing to natural attenuation of chlorinated solvents in heterogeneous aquifers.</div></div>","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"494 ","pages":"Article 138500"},"PeriodicalIF":12.2000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sorption-desorption processes contributing to the natural attenuation of cis-1,2-dichloroethene in porous media\",\"authors\":\"Katelyn A. Anderson , Uriel Garza-Rubalcava , Mark A. Widdowson , Eric J. Suchomel , Natalie L. Cápiro , Kurt D. Pennell\",\"doi\":\"10.1016/j.jhazmat.2025.138500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Monitored natural attenuation (MNA) is widely used to manage groundwater plumes with persistent chlorinated solvents exceeding regulatory standards. In heterogeneous aquifers, accumulation and release of these contaminants can impact MNA's effectiveness. Research often focuses on tetrachloroethene (PCE) and trichloroethene (TCE), but incomplete reductive dichlorination can lead to <em>cis</em>-1,2-dichloroethene (DCE) accumulation. This study investigates rate-limited sorption-desorption processes governing DCE release from lower-permeability media. Batch reactor studies with two soils established equilibrium linear distribution coefficients (K<sub>D</sub>) of 0.15 mL/g and 0.25 mL/g. Column transport studies were then completed using the same soils at two flow rates with flow interruptions to assess rate-limited desorption. A numerical simulator with a “two-site” sorption model was used to fit the effluent concentration data, yielding parameters for the fraction of sorption sites at instantaneous equilibrium (<em>f</em>) and the rate of sorption for time-dependent sites (<em>k</em>) ranging from 0.2 to 0.6 and 0.4–2 1/day, respectively. Soils with small <em>f</em> and <em>k</em> exhibit prolonged DCE release, which can benefit MNA at sites with an active DCE-to-ethene dechlorinating microbial community. These persistent, low concentrations of DCE can support microbial reductive dichlorination by providing sufficient residence time for the complete biodegradation to non-toxic ethene. This work emphasizes the importance of developing conceptual site models that capture sorption-desorption processes contributing to natural attenuation of chlorinated solvents in heterogeneous aquifers.</div></div>\",\"PeriodicalId\":361,\"journal\":{\"name\":\"Journal of Hazardous Materials\",\"volume\":\"494 \",\"pages\":\"Article 138500\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hazardous Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304389425014153\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304389425014153","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Sorption-desorption processes contributing to the natural attenuation of cis-1,2-dichloroethene in porous media
Monitored natural attenuation (MNA) is widely used to manage groundwater plumes with persistent chlorinated solvents exceeding regulatory standards. In heterogeneous aquifers, accumulation and release of these contaminants can impact MNA's effectiveness. Research often focuses on tetrachloroethene (PCE) and trichloroethene (TCE), but incomplete reductive dichlorination can lead to cis-1,2-dichloroethene (DCE) accumulation. This study investigates rate-limited sorption-desorption processes governing DCE release from lower-permeability media. Batch reactor studies with two soils established equilibrium linear distribution coefficients (KD) of 0.15 mL/g and 0.25 mL/g. Column transport studies were then completed using the same soils at two flow rates with flow interruptions to assess rate-limited desorption. A numerical simulator with a “two-site” sorption model was used to fit the effluent concentration data, yielding parameters for the fraction of sorption sites at instantaneous equilibrium (f) and the rate of sorption for time-dependent sites (k) ranging from 0.2 to 0.6 and 0.4–2 1/day, respectively. Soils with small f and k exhibit prolonged DCE release, which can benefit MNA at sites with an active DCE-to-ethene dechlorinating microbial community. These persistent, low concentrations of DCE can support microbial reductive dichlorination by providing sufficient residence time for the complete biodegradation to non-toxic ethene. This work emphasizes the importance of developing conceptual site models that capture sorption-desorption processes contributing to natural attenuation of chlorinated solvents in heterogeneous aquifers.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.