Ge Yan, Hongcai Tang, Yangzi Shen, Liyuan Han, Qifeng Han
{"title":"高效稳定的2D/3D异质结钙钛矿太阳能电池的ai合成铵基配体","authors":"Ge Yan, Hongcai Tang, Yangzi Shen, Liyuan Han, Qifeng Han","doi":"10.1002/adma.202503154","DOIUrl":null,"url":null,"abstract":"<p>The 2D/3D heterojunction perovskite solar cells (PSCs) exhibit remarkable stability, but the quantum well in the 2D perovskite capping layer hinders the carrier transport, thereby lowering the power conversion efficiency (PCE). The relationship between the transport barrier and the complex structure of ammonium ligands (ALs) is currently poorly understood, thus leading to the one-sided approach and inefficient process in the development of 2D perovskite. Here, a machine learning procedure is established to comprehensively explore the relationship and combined it with an artificial intelligence (AI) model based on reinforcement learning algorithm to accelerate the generation of ALs. Finally, the AI-designed ALs improved the carrier transport performance of the 2D perovskite capping layer, and we achieved a certified PCE of 26.12% in inverted PSCs. The devices retained 96.79% of the initial PCE after 2000 h operation in maximum power point tracking under 1-sun illumination at 85°C.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 26","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI-Generated Ammonium Ligands for High-Efficiency and Stable 2D/3D Heterojunction Perovskite Solar Cells\",\"authors\":\"Ge Yan, Hongcai Tang, Yangzi Shen, Liyuan Han, Qifeng Han\",\"doi\":\"10.1002/adma.202503154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The 2D/3D heterojunction perovskite solar cells (PSCs) exhibit remarkable stability, but the quantum well in the 2D perovskite capping layer hinders the carrier transport, thereby lowering the power conversion efficiency (PCE). The relationship between the transport barrier and the complex structure of ammonium ligands (ALs) is currently poorly understood, thus leading to the one-sided approach and inefficient process in the development of 2D perovskite. Here, a machine learning procedure is established to comprehensively explore the relationship and combined it with an artificial intelligence (AI) model based on reinforcement learning algorithm to accelerate the generation of ALs. Finally, the AI-designed ALs improved the carrier transport performance of the 2D perovskite capping layer, and we achieved a certified PCE of 26.12% in inverted PSCs. The devices retained 96.79% of the initial PCE after 2000 h operation in maximum power point tracking under 1-sun illumination at 85°C.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"37 26\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202503154\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202503154","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
AI-Generated Ammonium Ligands for High-Efficiency and Stable 2D/3D Heterojunction Perovskite Solar Cells
The 2D/3D heterojunction perovskite solar cells (PSCs) exhibit remarkable stability, but the quantum well in the 2D perovskite capping layer hinders the carrier transport, thereby lowering the power conversion efficiency (PCE). The relationship between the transport barrier and the complex structure of ammonium ligands (ALs) is currently poorly understood, thus leading to the one-sided approach and inefficient process in the development of 2D perovskite. Here, a machine learning procedure is established to comprehensively explore the relationship and combined it with an artificial intelligence (AI) model based on reinforcement learning algorithm to accelerate the generation of ALs. Finally, the AI-designed ALs improved the carrier transport performance of the 2D perovskite capping layer, and we achieved a certified PCE of 26.12% in inverted PSCs. The devices retained 96.79% of the initial PCE after 2000 h operation in maximum power point tracking under 1-sun illumination at 85°C.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.