mxene介导的氢氧化镍电子态工程用于高效压电催化合成过氧化氢

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL
Yuxiu Sun, Jiahao Liu, Zhaorui Zhang, Chenshuai Han, Weiliang Qi, Jinkui Chu, Siqi Liu, Minghui Yang
{"title":"mxene介导的氢氧化镍电子态工程用于高效压电催化合成过氧化氢","authors":"Yuxiu Sun, Jiahao Liu, Zhaorui Zhang, Chenshuai Han, Weiliang Qi, Jinkui Chu, Siqi Liu, Minghui Yang","doi":"10.1021/acs.jpclett.5c00685","DOIUrl":null,"url":null,"abstract":"The piezo-catalytic synthesis of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) offers a sustainable alternative to the traditional anthraquinone process by enhancing both the water oxidation reaction (WOR) and oxygen reduction reaction (ORR). However, conventional high-dielectric-constant piezoelectric materials, despite their superior piezoelectric responses, generally feature wide band gaps, low electrical conductivity, and a limited number of active sites─catalytically unfavorable characteristics that restrict their piezocatalytic efficiency. To address this, we developed a 2D Ni(OH)<sub>2</sub>-Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene composite for efficient H<sub>2</sub>O<sub>2</sub> production in pure water. The Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene modifies the electronic states of Ni(OH)<sub>2</sub>, enhancing its deprotonation ability (Ni<sup>2+</sup> to Ni<sup>3+</sup>) and creating hypervalent nickel active sites that boost H<sub>2</sub>O<sub>2</sub> synthesis. Theoretical and experimental studies confirm that H<sub>2</sub>O<sub>2</sub> generation occurs through combined WOR and ORR pathways, with ORR being dominant. The hierarchical 2D nanosheet structure facilitates crystal deformation under mechanical stress, amplifying the piezoelectric effect and reducing the energy input required for redox reactions. As a result, the Ni(OH)<sub>2</sub>-Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> composite achieves an impressive H<sub>2</sub>O<sub>2</sub> yield of 351.1 μmol·g<sup>–1</sup>·h<sup>–1</sup>. This work provides a novel design strategy for high-performance piezo-catalysts in sustainable H<sub>2</sub>O<sub>2</sub> production.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"15 1","pages":"4724-4733"},"PeriodicalIF":4.8000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MXene-Mediated Electronic State Engineering of Nickel Hydroxide for Efficient Piezo-Catalytic Hydrogen Peroxide Synthesis\",\"authors\":\"Yuxiu Sun, Jiahao Liu, Zhaorui Zhang, Chenshuai Han, Weiliang Qi, Jinkui Chu, Siqi Liu, Minghui Yang\",\"doi\":\"10.1021/acs.jpclett.5c00685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The piezo-catalytic synthesis of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) offers a sustainable alternative to the traditional anthraquinone process by enhancing both the water oxidation reaction (WOR) and oxygen reduction reaction (ORR). However, conventional high-dielectric-constant piezoelectric materials, despite their superior piezoelectric responses, generally feature wide band gaps, low electrical conductivity, and a limited number of active sites─catalytically unfavorable characteristics that restrict their piezocatalytic efficiency. To address this, we developed a 2D Ni(OH)<sub>2</sub>-Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene composite for efficient H<sub>2</sub>O<sub>2</sub> production in pure water. The Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene modifies the electronic states of Ni(OH)<sub>2</sub>, enhancing its deprotonation ability (Ni<sup>2+</sup> to Ni<sup>3+</sup>) and creating hypervalent nickel active sites that boost H<sub>2</sub>O<sub>2</sub> synthesis. Theoretical and experimental studies confirm that H<sub>2</sub>O<sub>2</sub> generation occurs through combined WOR and ORR pathways, with ORR being dominant. The hierarchical 2D nanosheet structure facilitates crystal deformation under mechanical stress, amplifying the piezoelectric effect and reducing the energy input required for redox reactions. As a result, the Ni(OH)<sub>2</sub>-Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> composite achieves an impressive H<sub>2</sub>O<sub>2</sub> yield of 351.1 μmol·g<sup>–1</sup>·h<sup>–1</sup>. This work provides a novel design strategy for high-performance piezo-catalysts in sustainable H<sub>2</sub>O<sub>2</sub> production.\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"15 1\",\"pages\":\"4724-4733\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpclett.5c00685\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.5c00685","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

通过提高水氧化反应(WOR)和氧还原反应(ORR),压电催化合成过氧化氢(H2O2)为传统的蒽醌工艺提供了一种可持续的替代方法。然而,传统的高介电常数压电材料尽管具有优异的压电响应,但通常具有宽带隙、低导电性和有限数量的活性位点等不利的催化特性,限制了它们的压电催化效率。为了解决这个问题,我们开发了一种2D Ni(OH)2-Ti3C2Tx MXene复合材料,用于在纯水中高效生产H2O2。Ti3C2Tx MXene修饰了Ni(OH)2的电子态,增强了其去质子化能力(Ni2+到Ni3+),并产生了促进H2O2合成的高价镍活性位点。理论和实验研究证实,H2O2的生成是通过WOR和ORR两种途径共同发生的,以ORR为主导。层次化的二维纳米片结构促进了晶体在机械应力下的变形,放大了压电效应,减少了氧化还原反应所需的能量输入。结果表明,Ni(OH)2-Ti3C2Tx复合材料的H2O2产率达到351.1 μmol·g-1·h-1。这项工作为可持续生产H2O2的高性能压电催化剂提供了一种新的设计策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

MXene-Mediated Electronic State Engineering of Nickel Hydroxide for Efficient Piezo-Catalytic Hydrogen Peroxide Synthesis

MXene-Mediated Electronic State Engineering of Nickel Hydroxide for Efficient Piezo-Catalytic Hydrogen Peroxide Synthesis
The piezo-catalytic synthesis of hydrogen peroxide (H2O2) offers a sustainable alternative to the traditional anthraquinone process by enhancing both the water oxidation reaction (WOR) and oxygen reduction reaction (ORR). However, conventional high-dielectric-constant piezoelectric materials, despite their superior piezoelectric responses, generally feature wide band gaps, low electrical conductivity, and a limited number of active sites─catalytically unfavorable characteristics that restrict their piezocatalytic efficiency. To address this, we developed a 2D Ni(OH)2-Ti3C2Tx MXene composite for efficient H2O2 production in pure water. The Ti3C2Tx MXene modifies the electronic states of Ni(OH)2, enhancing its deprotonation ability (Ni2+ to Ni3+) and creating hypervalent nickel active sites that boost H2O2 synthesis. Theoretical and experimental studies confirm that H2O2 generation occurs through combined WOR and ORR pathways, with ORR being dominant. The hierarchical 2D nanosheet structure facilitates crystal deformation under mechanical stress, amplifying the piezoelectric effect and reducing the energy input required for redox reactions. As a result, the Ni(OH)2-Ti3C2Tx composite achieves an impressive H2O2 yield of 351.1 μmol·g–1·h–1. This work provides a novel design strategy for high-performance piezo-catalysts in sustainable H2O2 production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信