成年小鼠星形细胞GLUT1缺失增强葡萄糖代谢和对中风的恢复能力

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Laetitia Thieren, Henri S. Zanker, Jeanne Droux, Urvashi Dalvi, Matthias T. Wyss, Rebecca Waag, Pierre-Luc Germain, Lukas M. von Ziegler, Zoe J. Looser, Ladina Hösli, Luca Ravotto, E. Dale Abel, Johannes Bohacek, Susanne Wegener, L. Felipe Barros, Mohamad El Amki, Bruno Weber, Aiman S. Saab
{"title":"成年小鼠星形细胞GLUT1缺失增强葡萄糖代谢和对中风的恢复能力","authors":"Laetitia Thieren, Henri S. Zanker, Jeanne Droux, Urvashi Dalvi, Matthias T. Wyss, Rebecca Waag, Pierre-Luc Germain, Lukas M. von Ziegler, Zoe J. Looser, Ladina Hösli, Luca Ravotto, E. Dale Abel, Johannes Bohacek, Susanne Wegener, L. Felipe Barros, Mohamad El Amki, Bruno Weber, Aiman S. Saab","doi":"10.1038/s41467-025-59400-2","DOIUrl":null,"url":null,"abstract":"<p>Brain activity relies on a steady supply of blood glucose. Astrocytes express glucose transporter 1 (GLUT1), considered their primary route for glucose uptake to sustain metabolic and antioxidant support for neurons. While GLUT1 deficiency causes severe developmental impairments, its role in adult astrocytes remains unclear. Here, we show that astrocytes and neurons tolerate the inducible, astrocyte-specific deletion of GLUT1 in adulthood. Sensorimotor and memory functions remain intact in male GLUT1 cKO mice, indicating that GLUT1 loss does not impair behavior. Despite GLUT1 loss, two-photon glucose sensor imaging reveals that astrocytes maintain normal resting glucose levels but exhibit a more than two-fold increase in glucose consumption, indicating enhanced metabolic activity. Notably, male GLUT1 cKO mice display reduced infarct volumes following stroke, suggesting a neuroprotective effect of increased astrocytic glucose metabolism. Our findings reveal metabolic adaptability in astrocytes, ensuring glucose uptake and neuronal support despite the absence of their primary transporter.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"9 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Astrocytic GLUT1 deletion in adult mice enhances glucose metabolism and resilience to stroke\",\"authors\":\"Laetitia Thieren, Henri S. Zanker, Jeanne Droux, Urvashi Dalvi, Matthias T. Wyss, Rebecca Waag, Pierre-Luc Germain, Lukas M. von Ziegler, Zoe J. Looser, Ladina Hösli, Luca Ravotto, E. Dale Abel, Johannes Bohacek, Susanne Wegener, L. Felipe Barros, Mohamad El Amki, Bruno Weber, Aiman S. Saab\",\"doi\":\"10.1038/s41467-025-59400-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Brain activity relies on a steady supply of blood glucose. Astrocytes express glucose transporter 1 (GLUT1), considered their primary route for glucose uptake to sustain metabolic and antioxidant support for neurons. While GLUT1 deficiency causes severe developmental impairments, its role in adult astrocytes remains unclear. Here, we show that astrocytes and neurons tolerate the inducible, astrocyte-specific deletion of GLUT1 in adulthood. Sensorimotor and memory functions remain intact in male GLUT1 cKO mice, indicating that GLUT1 loss does not impair behavior. Despite GLUT1 loss, two-photon glucose sensor imaging reveals that astrocytes maintain normal resting glucose levels but exhibit a more than two-fold increase in glucose consumption, indicating enhanced metabolic activity. Notably, male GLUT1 cKO mice display reduced infarct volumes following stroke, suggesting a neuroprotective effect of increased astrocytic glucose metabolism. Our findings reveal metabolic adaptability in astrocytes, ensuring glucose uptake and neuronal support despite the absence of their primary transporter.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-59400-2\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59400-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

大脑活动依赖于稳定的血糖供应。星形胶质细胞表达葡萄糖转运蛋白1 (GLUT1),被认为是葡萄糖摄取的主要途径,以维持神经元的代谢和抗氧化支持。虽然GLUT1缺乏会导致严重的发育障碍,但其在成人星形胶质细胞中的作用尚不清楚。在这里,我们发现星形胶质细胞和神经元在成年期耐受诱导的星形胶质细胞特异性的GLUT1缺失。感觉运动和记忆功能在雄性GLUT1 cKO小鼠中保持完整,表明GLUT1缺失不会损害行为。尽管GLUT1丢失,双光子葡萄糖传感器成像显示星形胶质细胞维持正常的静息葡萄糖水平,但葡萄糖消耗增加两倍以上,表明代谢活性增强。值得注意的是,雄性GLUT1 cKO小鼠在中风后显示梗死体积减少,表明星形细胞葡萄糖代谢增加具有神经保护作用。我们的研究结果揭示了星形胶质细胞的代谢适应性,尽管缺乏其主要转运体,但仍能确保葡萄糖摄取和神经元支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Astrocytic GLUT1 deletion in adult mice enhances glucose metabolism and resilience to stroke

Astrocytic GLUT1 deletion in adult mice enhances glucose metabolism and resilience to stroke

Brain activity relies on a steady supply of blood glucose. Astrocytes express glucose transporter 1 (GLUT1), considered their primary route for glucose uptake to sustain metabolic and antioxidant support for neurons. While GLUT1 deficiency causes severe developmental impairments, its role in adult astrocytes remains unclear. Here, we show that astrocytes and neurons tolerate the inducible, astrocyte-specific deletion of GLUT1 in adulthood. Sensorimotor and memory functions remain intact in male GLUT1 cKO mice, indicating that GLUT1 loss does not impair behavior. Despite GLUT1 loss, two-photon glucose sensor imaging reveals that astrocytes maintain normal resting glucose levels but exhibit a more than two-fold increase in glucose consumption, indicating enhanced metabolic activity. Notably, male GLUT1 cKO mice display reduced infarct volumes following stroke, suggesting a neuroprotective effect of increased astrocytic glucose metabolism. Our findings reveal metabolic adaptability in astrocytes, ensuring glucose uptake and neuronal support despite the absence of their primary transporter.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信