哺乳动物转基因表达的电磁无线遥控

IF 38.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhihua Lin, Preetam Guha Ray, Jinbo Huang, Peter Buchmann, Martin Fussenegger
{"title":"哺乳动物转基因表达的电磁无线遥控","authors":"Zhihua Lin, Preetam Guha Ray, Jinbo Huang, Peter Buchmann, Martin Fussenegger","doi":"10.1038/s41565-025-01929-w","DOIUrl":null,"url":null,"abstract":"<p>Communication between wireless field receivers and biological sensors remains a key constraint in the development of wireless electronic devices for minimally invasive medical monitoring and biomedical applications involving gene and cell therapies. Here we describe a nanoparticle–cell interface that enables electromagnetic programming of wireless expression regulation (EMPOWER) of transgenes via the generation of cellular reactive oxygen species (ROS) at a biosafe level. Multiferroic nanoparticles coated with chitosan to improve biocompatibility generate ROS in the cytoplasm of cells in response to a low-frequency (1-kHz) magnetic field. Overexpressed ROS-responsive KEAP1/NRF2 biosensors detect the generated ROS which is rewired to synthetic ROS-responsive promoters to drive transgene expression. In a proof-of-concept study, subcutaneously implanted alginate-microencapsulated cells stably expressing an EMPOWER-controlled insulin expression system normalized blood-glucose levels in a mouse model of type 1 diabetes in response to a weak magnetic field.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"56 1","pages":""},"PeriodicalIF":38.1000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electromagnetic wireless remote control of mammalian transgene expression\",\"authors\":\"Zhihua Lin, Preetam Guha Ray, Jinbo Huang, Peter Buchmann, Martin Fussenegger\",\"doi\":\"10.1038/s41565-025-01929-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Communication between wireless field receivers and biological sensors remains a key constraint in the development of wireless electronic devices for minimally invasive medical monitoring and biomedical applications involving gene and cell therapies. Here we describe a nanoparticle–cell interface that enables electromagnetic programming of wireless expression regulation (EMPOWER) of transgenes via the generation of cellular reactive oxygen species (ROS) at a biosafe level. Multiferroic nanoparticles coated with chitosan to improve biocompatibility generate ROS in the cytoplasm of cells in response to a low-frequency (1-kHz) magnetic field. Overexpressed ROS-responsive KEAP1/NRF2 biosensors detect the generated ROS which is rewired to synthetic ROS-responsive promoters to drive transgene expression. In a proof-of-concept study, subcutaneously implanted alginate-microencapsulated cells stably expressing an EMPOWER-controlled insulin expression system normalized blood-glucose levels in a mouse model of type 1 diabetes in response to a weak magnetic field.</p>\",\"PeriodicalId\":18915,\"journal\":{\"name\":\"Nature nanotechnology\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":38.1000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41565-025-01929-w\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41565-025-01929-w","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

无线场接收器和生物传感器之间的通信仍然是开发用于微创医疗监测和涉及基因和细胞治疗的生物医学应用的无线电子设备的关键制约因素。在这里,我们描述了一种纳米粒子-细胞界面,通过在生物安全水平上产生细胞活性氧(ROS),使转基因的无线表达调节(EMPOWER)的电磁编程成为可能。壳聚糖包被的多铁纳米粒子在低频率(1khz)磁场作用下在细胞质中产生活性氧,以提高生物相容性。过表达ROS应答的KEAP1/NRF2生物传感器检测生成的ROS,这些ROS被重新连接到合成的ROS应答启动子上,以驱动转基因表达。在一项概念验证研究中,在1型糖尿病小鼠模型中,在弱磁场下皮下植入海藻酸盐微胶囊细胞,稳定表达empower控制的胰岛素表达系统,使血糖水平正常化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Electromagnetic wireless remote control of mammalian transgene expression

Electromagnetic wireless remote control of mammalian transgene expression

Communication between wireless field receivers and biological sensors remains a key constraint in the development of wireless electronic devices for minimally invasive medical monitoring and biomedical applications involving gene and cell therapies. Here we describe a nanoparticle–cell interface that enables electromagnetic programming of wireless expression regulation (EMPOWER) of transgenes via the generation of cellular reactive oxygen species (ROS) at a biosafe level. Multiferroic nanoparticles coated with chitosan to improve biocompatibility generate ROS in the cytoplasm of cells in response to a low-frequency (1-kHz) magnetic field. Overexpressed ROS-responsive KEAP1/NRF2 biosensors detect the generated ROS which is rewired to synthetic ROS-responsive promoters to drive transgene expression. In a proof-of-concept study, subcutaneously implanted alginate-microencapsulated cells stably expressing an EMPOWER-controlled insulin expression system normalized blood-glucose levels in a mouse model of type 1 diabetes in response to a weak magnetic field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature nanotechnology
Nature nanotechnology 工程技术-材料科学:综合
CiteScore
59.70
自引率
0.80%
发文量
196
审稿时长
4-8 weeks
期刊介绍: Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations. Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信