Bowen Ma , Engang Wang , Bailing An , Weixin Luo , Yunchao Li , Shuanglu Zhang
{"title":"变形诱导析出Cu4(Sc, Zr)的原位生成提高了Cu-Cr-Zr-Sc合金的综合性能","authors":"Bowen Ma , Engang Wang , Bailing An , Weixin Luo , Yunchao Li , Shuanglu Zhang","doi":"10.1016/j.jallcom.2025.180774","DOIUrl":null,"url":null,"abstract":"<div><div>This study utilized Sc doping to form a new intermetallic compound and was combined with SRA (Solution + 75 % Rolling + Aging) process to control the in-situ formation of the Cu<sub>4</sub>(Sc, Zr) phase and its precipitation behavior at micro and nano scales, thereby enhanced the comprehensive properties of the alloy. Compared to the normal SA (Solution + Aging) process, the SRA (Solution + 75 % Rolling + Aging) process is more conducive to the simultaneous improvement of mechanical and electrical properties. When the Sc content is 0.15 %, under the SRA peak aging condition (400 ℃ × 4 h), the hardness, electrical conductivity, and strength were 196.45 ± 2.16 HV, 72 % IACS, and 540.79 ± 10.1 MPa, respectively. The alloy maintained high strength and hardness under small rolling reduction due to the fine dispersion of the Cu<sub>4</sub>(Sc, Zr) phase at small sizes (∼5.27 μm) at the micron scale (∼0.41 %) and nanoscale precipitation. The nanoscale Cu<sub>4</sub>(Sc, Zr) phase forms based on substitution in the Cu<sub>4</sub>Sc crystal structure. After the SRA process, an orientation relationship of <span><math><mrow><msub><mrow><mo>[</mo><mn>110</mn><mo>]</mo></mrow><mrow><mtext>Cu</mtext></mrow></msub><mo>/</mo><mo>/</mo><msub><mrow><mo>[</mo><mn>012</mn><mo>]</mo></mrow><mrow><msub><mrow><mtext>Cu</mtext></mrow><mrow><mn>4</mn></mrow></msub><mo>(</mo><mtext>Sc</mtext><mo>,</mo><mtext> Zr</mtext><mo>)</mo></mrow></msub></mrow></math></span>,<span><math><mrow><msub><mrow><mfenced><mrow><mover><mrow><mn>1</mn></mrow><mo>̅</mo></mover><mn>1</mn><mover><mrow><mn>1</mn></mrow><mo>̅</mo></mover></mrow></mfenced></mrow><mrow><mtext>Cu</mtext></mrow></msub><mo>/</mo><mo>/</mo><msub><mrow><mo>(</mo><mn>100</mn><mo>)</mo></mrow><mrow><msub><mrow><mtext>Cu</mtext></mrow><mrow><mn>4</mn></mrow></msub><mo>(</mo><mtext>Sc</mtext><mo>,</mo><mtext> Zr</mtext><mo>)</mo></mrow></msub><mspace></mspace></mrow></math></span>between the Cu<sub>4</sub>(Sc, Zr) phase and the matrix is established, and its size is significantly refined, with stacking faults observed internally. The orientation relationship of the Fcc-Cr phase changed from <span><math><mrow><msub><mrow><mo>[</mo><mover><mrow><mn>1</mn></mrow><mo>̅</mo></mover><mn>12</mn><mo>]</mo></mrow><mrow><mtext>Cu</mtext></mrow></msub><mo>/</mo><mo>/</mo><msub><mrow><mo>[</mo><mn>011</mn><mo>]</mo></mrow><mrow><mtext>Cr</mtext></mrow></msub></mrow></math></span>, <span><math><mrow><msub><mrow><mo>(</mo><mover><mrow><mn>1</mn></mrow><mo>̅</mo></mover><mn>1</mn><mover><mrow><mn>1</mn></mrow><mo>̅</mo></mover><mo>)</mo></mrow><mrow><mtext>Cu</mtext></mrow></msub><mo>/</mo><mo>/</mo><msub><mrow><mo>(</mo><mover><mrow><mn>2</mn></mrow><mo>̅</mo></mover><mn>00</mn><mo>)</mo></mrow><mrow><mtext>Cr</mtext></mrow></msub></mrow></math></span> in the peak aging state of the SA process to a Cube-on-Cube. This indicates that deformation processes can alter the orientation relationships of precipitates, and the presence of metastable phases contributes to improving the comprehensive properties of the alloy.</div></div>","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"1029 ","pages":"Article 180774"},"PeriodicalIF":6.3000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-situ formation of Cu4(Sc, Zr) with deformation-induced precipitation enhances the comprehensive properties of Cu-Cr-Zr-Sc alloys\",\"authors\":\"Bowen Ma , Engang Wang , Bailing An , Weixin Luo , Yunchao Li , Shuanglu Zhang\",\"doi\":\"10.1016/j.jallcom.2025.180774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study utilized Sc doping to form a new intermetallic compound and was combined with SRA (Solution + 75 % Rolling + Aging) process to control the in-situ formation of the Cu<sub>4</sub>(Sc, Zr) phase and its precipitation behavior at micro and nano scales, thereby enhanced the comprehensive properties of the alloy. Compared to the normal SA (Solution + Aging) process, the SRA (Solution + 75 % Rolling + Aging) process is more conducive to the simultaneous improvement of mechanical and electrical properties. When the Sc content is 0.15 %, under the SRA peak aging condition (400 ℃ × 4 h), the hardness, electrical conductivity, and strength were 196.45 ± 2.16 HV, 72 % IACS, and 540.79 ± 10.1 MPa, respectively. The alloy maintained high strength and hardness under small rolling reduction due to the fine dispersion of the Cu<sub>4</sub>(Sc, Zr) phase at small sizes (∼5.27 μm) at the micron scale (∼0.41 %) and nanoscale precipitation. The nanoscale Cu<sub>4</sub>(Sc, Zr) phase forms based on substitution in the Cu<sub>4</sub>Sc crystal structure. After the SRA process, an orientation relationship of <span><math><mrow><msub><mrow><mo>[</mo><mn>110</mn><mo>]</mo></mrow><mrow><mtext>Cu</mtext></mrow></msub><mo>/</mo><mo>/</mo><msub><mrow><mo>[</mo><mn>012</mn><mo>]</mo></mrow><mrow><msub><mrow><mtext>Cu</mtext></mrow><mrow><mn>4</mn></mrow></msub><mo>(</mo><mtext>Sc</mtext><mo>,</mo><mtext> Zr</mtext><mo>)</mo></mrow></msub></mrow></math></span>,<span><math><mrow><msub><mrow><mfenced><mrow><mover><mrow><mn>1</mn></mrow><mo>̅</mo></mover><mn>1</mn><mover><mrow><mn>1</mn></mrow><mo>̅</mo></mover></mrow></mfenced></mrow><mrow><mtext>Cu</mtext></mrow></msub><mo>/</mo><mo>/</mo><msub><mrow><mo>(</mo><mn>100</mn><mo>)</mo></mrow><mrow><msub><mrow><mtext>Cu</mtext></mrow><mrow><mn>4</mn></mrow></msub><mo>(</mo><mtext>Sc</mtext><mo>,</mo><mtext> Zr</mtext><mo>)</mo></mrow></msub><mspace></mspace></mrow></math></span>between the Cu<sub>4</sub>(Sc, Zr) phase and the matrix is established, and its size is significantly refined, with stacking faults observed internally. The orientation relationship of the Fcc-Cr phase changed from <span><math><mrow><msub><mrow><mo>[</mo><mover><mrow><mn>1</mn></mrow><mo>̅</mo></mover><mn>12</mn><mo>]</mo></mrow><mrow><mtext>Cu</mtext></mrow></msub><mo>/</mo><mo>/</mo><msub><mrow><mo>[</mo><mn>011</mn><mo>]</mo></mrow><mrow><mtext>Cr</mtext></mrow></msub></mrow></math></span>, <span><math><mrow><msub><mrow><mo>(</mo><mover><mrow><mn>1</mn></mrow><mo>̅</mo></mover><mn>1</mn><mover><mrow><mn>1</mn></mrow><mo>̅</mo></mover><mo>)</mo></mrow><mrow><mtext>Cu</mtext></mrow></msub><mo>/</mo><mo>/</mo><msub><mrow><mo>(</mo><mover><mrow><mn>2</mn></mrow><mo>̅</mo></mover><mn>00</mn><mo>)</mo></mrow><mrow><mtext>Cr</mtext></mrow></msub></mrow></math></span> in the peak aging state of the SA process to a Cube-on-Cube. This indicates that deformation processes can alter the orientation relationships of precipitates, and the presence of metastable phases contributes to improving the comprehensive properties of the alloy.</div></div>\",\"PeriodicalId\":344,\"journal\":{\"name\":\"Journal of Alloys and Compounds\",\"volume\":\"1029 \",\"pages\":\"Article 180774\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alloys and Compounds\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925838825023357\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925838825023357","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
In-situ formation of Cu4(Sc, Zr) with deformation-induced precipitation enhances the comprehensive properties of Cu-Cr-Zr-Sc alloys
This study utilized Sc doping to form a new intermetallic compound and was combined with SRA (Solution + 75 % Rolling + Aging) process to control the in-situ formation of the Cu4(Sc, Zr) phase and its precipitation behavior at micro and nano scales, thereby enhanced the comprehensive properties of the alloy. Compared to the normal SA (Solution + Aging) process, the SRA (Solution + 75 % Rolling + Aging) process is more conducive to the simultaneous improvement of mechanical and electrical properties. When the Sc content is 0.15 %, under the SRA peak aging condition (400 ℃ × 4 h), the hardness, electrical conductivity, and strength were 196.45 ± 2.16 HV, 72 % IACS, and 540.79 ± 10.1 MPa, respectively. The alloy maintained high strength and hardness under small rolling reduction due to the fine dispersion of the Cu4(Sc, Zr) phase at small sizes (∼5.27 μm) at the micron scale (∼0.41 %) and nanoscale precipitation. The nanoscale Cu4(Sc, Zr) phase forms based on substitution in the Cu4Sc crystal structure. After the SRA process, an orientation relationship of ,between the Cu4(Sc, Zr) phase and the matrix is established, and its size is significantly refined, with stacking faults observed internally. The orientation relationship of the Fcc-Cr phase changed from , in the peak aging state of the SA process to a Cube-on-Cube. This indicates that deformation processes can alter the orientation relationships of precipitates, and the presence of metastable phases contributes to improving the comprehensive properties of the alloy.
期刊介绍:
The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.