{"title":"Bt (Cry1Ab + Vip3Aa)玉米与苯甲酸埃维菌素和氯虫腈对秋粘虫的协同效应","authors":"Wenhui Wang, Guodong Kang, Shuang Chen, Dandan Zhang, Shengyuan Zhao, Haitao Li, Xianming Yang, Yutao Xiao, Gemei Liang, Kongming Wu","doi":"10.1007/s10340-025-01897-z","DOIUrl":null,"url":null,"abstract":"<p>The invasion of the fall armyworm (FAW), <i>Spodoptera frugiperda</i> (J. E. Smith), has posed a serious threat to maize production in Africa and Asia. Chemical insecticides and Bt maize are the main means for FAW control, but the interaction between these two measures is also unclear. In this study, the susceptibility of the field population (Ezhou) fed on Bt maize insecticidal protein and the Vip3Aa-resistant population DH-R (206-fold) to emamectin benzoate (EB) and chlorantraniliprole (CAP) was determined by the topical application method. The results showed that the susceptibility of both populations to the two insecticides increased significantly. The mechanism is attributed to the inhibition of the activities of enzymes detoxification enzymes, including carboxylesterase (CarE), glutathione S-transferase (GSTs), and multifunctional oxidase (MFO). The corrected control effects of Bt (Cry1Ab + Vip3Aa) maize combined with EB or CAP against larvae were measured by a spraying method in the laboratory and field. The results showed that the combined use of Bt (Cry1Ab + Vip3Aa) maize and EB increased the corrected control effect by 22.70%-22.86% in the laboratory and 16.74% in the field. Similarly, the combined use of Bt (Cry1Ab + Vip3Aa) maize and CAP increased the corrected control effect by 54.92%-61.59% in the laboratory and 19.62% in the field. It is concluded that the Bt (Cry1Ab + Vip3Aa) maize and chemical insecticides (EB and CAP) have synergistic effects against FAW, providing a theoretical basis for integrating Bt maize with chemical insecticides to manage the FAW populations.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"110 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic effect of Bt (Cry1Ab + Vip3Aa) maize with emamectin benzoate and chlorantraniliprole against the fall armyworm, Spodoptera frugiperda\",\"authors\":\"Wenhui Wang, Guodong Kang, Shuang Chen, Dandan Zhang, Shengyuan Zhao, Haitao Li, Xianming Yang, Yutao Xiao, Gemei Liang, Kongming Wu\",\"doi\":\"10.1007/s10340-025-01897-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The invasion of the fall armyworm (FAW), <i>Spodoptera frugiperda</i> (J. E. Smith), has posed a serious threat to maize production in Africa and Asia. Chemical insecticides and Bt maize are the main means for FAW control, but the interaction between these two measures is also unclear. In this study, the susceptibility of the field population (Ezhou) fed on Bt maize insecticidal protein and the Vip3Aa-resistant population DH-R (206-fold) to emamectin benzoate (EB) and chlorantraniliprole (CAP) was determined by the topical application method. The results showed that the susceptibility of both populations to the two insecticides increased significantly. The mechanism is attributed to the inhibition of the activities of enzymes detoxification enzymes, including carboxylesterase (CarE), glutathione S-transferase (GSTs), and multifunctional oxidase (MFO). The corrected control effects of Bt (Cry1Ab + Vip3Aa) maize combined with EB or CAP against larvae were measured by a spraying method in the laboratory and field. The results showed that the combined use of Bt (Cry1Ab + Vip3Aa) maize and EB increased the corrected control effect by 22.70%-22.86% in the laboratory and 16.74% in the field. Similarly, the combined use of Bt (Cry1Ab + Vip3Aa) maize and CAP increased the corrected control effect by 54.92%-61.59% in the laboratory and 19.62% in the field. It is concluded that the Bt (Cry1Ab + Vip3Aa) maize and chemical insecticides (EB and CAP) have synergistic effects against FAW, providing a theoretical basis for integrating Bt maize with chemical insecticides to manage the FAW populations.</p>\",\"PeriodicalId\":16736,\"journal\":{\"name\":\"Journal of Pest Science\",\"volume\":\"110 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pest Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s10340-025-01897-z\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pest Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10340-025-01897-z","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Synergistic effect of Bt (Cry1Ab + Vip3Aa) maize with emamectin benzoate and chlorantraniliprole against the fall armyworm, Spodoptera frugiperda
The invasion of the fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith), has posed a serious threat to maize production in Africa and Asia. Chemical insecticides and Bt maize are the main means for FAW control, but the interaction between these two measures is also unclear. In this study, the susceptibility of the field population (Ezhou) fed on Bt maize insecticidal protein and the Vip3Aa-resistant population DH-R (206-fold) to emamectin benzoate (EB) and chlorantraniliprole (CAP) was determined by the topical application method. The results showed that the susceptibility of both populations to the two insecticides increased significantly. The mechanism is attributed to the inhibition of the activities of enzymes detoxification enzymes, including carboxylesterase (CarE), glutathione S-transferase (GSTs), and multifunctional oxidase (MFO). The corrected control effects of Bt (Cry1Ab + Vip3Aa) maize combined with EB or CAP against larvae were measured by a spraying method in the laboratory and field. The results showed that the combined use of Bt (Cry1Ab + Vip3Aa) maize and EB increased the corrected control effect by 22.70%-22.86% in the laboratory and 16.74% in the field. Similarly, the combined use of Bt (Cry1Ab + Vip3Aa) maize and CAP increased the corrected control effect by 54.92%-61.59% in the laboratory and 19.62% in the field. It is concluded that the Bt (Cry1Ab + Vip3Aa) maize and chemical insecticides (EB and CAP) have synergistic effects against FAW, providing a theoretical basis for integrating Bt maize with chemical insecticides to manage the FAW populations.
期刊介绍:
Journal of Pest Science publishes high-quality papers on all aspects of pest science in agriculture, horticulture (including viticulture), forestry, urban pests, and stored products research, including health and safety issues.
Journal of Pest Science reports on advances in control of pests and animal vectors of diseases, the biology, ethology and ecology of pests and their antagonists, and the use of other beneficial organisms in pest control. The journal covers all noxious or damaging groups of animals, including arthropods, nematodes, molluscs, and vertebrates.
Journal of Pest Science devotes special attention to emerging and innovative pest control strategies, including the side effects of such approaches on non-target organisms, for example natural enemies and pollinators, and the implementation of these strategies in integrated pest management.
Journal of Pest Science also publishes papers on the management of agro- and forest ecosystems where this is relevant to pest control. Papers on important methodological developments relevant for pest control will be considered as well.