Qian Wang , Tao Zhang , Xuemei Liu , Shuo Liu , Xinyue Wang , Xiaoming Wang
{"title":"垃圾填埋场厌氧渗滤液中6:2氟端聚物醇的归宿:对垃圾填埋场逸散性排放的影响","authors":"Qian Wang , Tao Zhang , Xuemei Liu , Shuo Liu , Xinyue Wang , Xiaoming Wang","doi":"10.1016/j.envpol.2025.126375","DOIUrl":null,"url":null,"abstract":"<div><div>Although 6:2 fluorotelomer alcohol (6:2 FTOH) is a common compound in landfill leachate, its anaerobic biotransformation and partitioning remain poorly understood. This study investigated the anaerobic biotransformation and partitioning of 6:2 FTOH in landfill leachate microcosms. At the end of the experiment, 19.4 mol% of the initial 6:2 FTOH partitioned into the gas phase. Therefore, anaerobic leachate could represent a significant pathway for semi-volatile 6:2 FTOH to the landfill gas or enter the atmosphere. The anaerobic biotransformation of 6:2 FTOH in leachate conformed to the first-order bi-exponential degradation model and the half-life was 12 days. The 6:2 fluorotelomer carboxylic acid (6:2 FTCA) was the main biotransformation product, accounting for 8 mol%. Moreover, microbial community composition showed the genus of <em>Pseudomonas, DMER64,</em> and <em>Fastidiosipila</em> may play a role in the biotransformation of 6:2 FTOH. This study elucidates the potential significance of biotransformation processes on both the partitioning and environmental fate of 6:2 FTOH within landfill leachate.</div></div>","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"376 ","pages":"Article 126375"},"PeriodicalIF":7.3000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The fate of 6:2 fluorotelomer alcohol in anaerobic landfill leachate: Implication for fugitive emission from waste landfills\",\"authors\":\"Qian Wang , Tao Zhang , Xuemei Liu , Shuo Liu , Xinyue Wang , Xiaoming Wang\",\"doi\":\"10.1016/j.envpol.2025.126375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Although 6:2 fluorotelomer alcohol (6:2 FTOH) is a common compound in landfill leachate, its anaerobic biotransformation and partitioning remain poorly understood. This study investigated the anaerobic biotransformation and partitioning of 6:2 FTOH in landfill leachate microcosms. At the end of the experiment, 19.4 mol% of the initial 6:2 FTOH partitioned into the gas phase. Therefore, anaerobic leachate could represent a significant pathway for semi-volatile 6:2 FTOH to the landfill gas or enter the atmosphere. The anaerobic biotransformation of 6:2 FTOH in leachate conformed to the first-order bi-exponential degradation model and the half-life was 12 days. The 6:2 fluorotelomer carboxylic acid (6:2 FTCA) was the main biotransformation product, accounting for 8 mol%. Moreover, microbial community composition showed the genus of <em>Pseudomonas, DMER64,</em> and <em>Fastidiosipila</em> may play a role in the biotransformation of 6:2 FTOH. This study elucidates the potential significance of biotransformation processes on both the partitioning and environmental fate of 6:2 FTOH within landfill leachate.</div></div>\",\"PeriodicalId\":311,\"journal\":{\"name\":\"Environmental Pollution\",\"volume\":\"376 \",\"pages\":\"Article 126375\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Pollution\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0269749125007481\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0269749125007481","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
The fate of 6:2 fluorotelomer alcohol in anaerobic landfill leachate: Implication for fugitive emission from waste landfills
Although 6:2 fluorotelomer alcohol (6:2 FTOH) is a common compound in landfill leachate, its anaerobic biotransformation and partitioning remain poorly understood. This study investigated the anaerobic biotransformation and partitioning of 6:2 FTOH in landfill leachate microcosms. At the end of the experiment, 19.4 mol% of the initial 6:2 FTOH partitioned into the gas phase. Therefore, anaerobic leachate could represent a significant pathway for semi-volatile 6:2 FTOH to the landfill gas or enter the atmosphere. The anaerobic biotransformation of 6:2 FTOH in leachate conformed to the first-order bi-exponential degradation model and the half-life was 12 days. The 6:2 fluorotelomer carboxylic acid (6:2 FTCA) was the main biotransformation product, accounting for 8 mol%. Moreover, microbial community composition showed the genus of Pseudomonas, DMER64, and Fastidiosipila may play a role in the biotransformation of 6:2 FTOH. This study elucidates the potential significance of biotransformation processes on both the partitioning and environmental fate of 6:2 FTOH within landfill leachate.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.