生长后氧化法制备CoO/Co交换偏置薄膜的磁化逆转

IF 5.8 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
M. Perzanowski, K. Potzger, R. Heller, M. Krupinski, M. Marszalek
{"title":"生长后氧化法制备CoO/Co交换偏置薄膜的磁化逆转","authors":"M. Perzanowski, K. Potzger, R. Heller, M. Krupinski, M. Marszalek","doi":"10.1016/j.jallcom.2025.180810","DOIUrl":null,"url":null,"abstract":"Co thin films grown by thermal evaporation have been oxidized in-situ, in ambient conditions, as well as using a plasma device. In all cases, the hysteresis loops reveal exchange-bias coupling between the Co and the CoO layers. We show that the CoO/Co systems fabricated under ambient conditions and in a pure oxygen atmosphere couple magnetically in a similar way. Contrary, the CoO layer produced by plasma treatment shows a lower bias field, coercive field and blocking temperature. The systems also exhibit asymmetric hysteresis loops with different magnetization reversal for the lower descending and upper ascending magnetization branches. In one direction of the external magnetic field sweep the CoO/Co system switches mainly by domain wall motion, while for the opposite field, the influence of the coherent magnetization rotation on the reversal process is stronger. The magnitude of the asymmetry is dependent on the measurement temperature.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"1 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetization reversal in CoO/Co exchange-biased thin films prepared by post-growth oxidation\",\"authors\":\"M. Perzanowski, K. Potzger, R. Heller, M. Krupinski, M. Marszalek\",\"doi\":\"10.1016/j.jallcom.2025.180810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Co thin films grown by thermal evaporation have been oxidized in-situ, in ambient conditions, as well as using a plasma device. In all cases, the hysteresis loops reveal exchange-bias coupling between the Co and the CoO layers. We show that the CoO/Co systems fabricated under ambient conditions and in a pure oxygen atmosphere couple magnetically in a similar way. Contrary, the CoO layer produced by plasma treatment shows a lower bias field, coercive field and blocking temperature. The systems also exhibit asymmetric hysteresis loops with different magnetization reversal for the lower descending and upper ascending magnetization branches. In one direction of the external magnetic field sweep the CoO/Co system switches mainly by domain wall motion, while for the opposite field, the influence of the coherent magnetization rotation on the reversal process is stronger. The magnitude of the asymmetry is dependent on the measurement temperature.\",\"PeriodicalId\":344,\"journal\":{\"name\":\"Journal of Alloys and Compounds\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alloys and Compounds\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jallcom.2025.180810\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2025.180810","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

通过热蒸发生长的Co薄膜已经被原位氧化,在环境条件下,以及使用等离子体装置。在所有情况下,迟滞回路揭示了Co层和CoO层之间的交换偏置耦合。我们表明,在正常条件下和在纯氧气氛中制备的CoO/Co体系以类似的方式磁性偶联。相反,等离子体处理后的CoO层具有较低的偏置场、矫顽力场和阻滞温度。系统还表现出不对称的磁滞回线,在磁化支路的下下降和上上升处,磁滞回线具有不同的磁化反转。在外加磁场扫掠的一个方向上,CoO/Co体系的切换主要依靠畴壁运动,而在相反的方向上,相干磁化旋转对反转过程的影响更大。不对称的大小取决于测量温度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Magnetization reversal in CoO/Co exchange-biased thin films prepared by post-growth oxidation

Magnetization reversal in CoO/Co exchange-biased thin films prepared by post-growth oxidation
Co thin films grown by thermal evaporation have been oxidized in-situ, in ambient conditions, as well as using a plasma device. In all cases, the hysteresis loops reveal exchange-bias coupling between the Co and the CoO layers. We show that the CoO/Co systems fabricated under ambient conditions and in a pure oxygen atmosphere couple magnetically in a similar way. Contrary, the CoO layer produced by plasma treatment shows a lower bias field, coercive field and blocking temperature. The systems also exhibit asymmetric hysteresis loops with different magnetization reversal for the lower descending and upper ascending magnetization branches. In one direction of the external magnetic field sweep the CoO/Co system switches mainly by domain wall motion, while for the opposite field, the influence of the coherent magnetization rotation on the reversal process is stronger. The magnitude of the asymmetry is dependent on the measurement temperature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信