Jianhui Lian, Min Du, Shuai Lu, Bingqiu Chen, Gail Zasowski, Zhaoyu Li, Xiaojie Liao and Chao Liu
{"title":"揭开银河系中年轻厚盘的面纱","authors":"Jianhui Lian, Min Du, Shuai Lu, Bingqiu Chen, Gail Zasowski, Zhaoyu Li, Xiaojie Liao and Chao Liu","doi":"10.3847/2041-8213/adccb7","DOIUrl":null,"url":null,"abstract":"The thickness of a galaxy’s disk provides a valuable probe of its formation and evolution history. Observations of the Milky Way and local galaxies have revealed an ubiquitous disk structure with two distinctive components: an old thick disk and a relatively young thin disk. The formation of this dual-disk structure and the mechanisms that develop the thickness of the disk are still unclear. Whether the disk thickness is inherited from the birth environment or is established through secular dynamical heating after formation is under debate. In this work, we identify a relatively young (∼6.6 billion yr old), geometric thick disk in the Milky Way, with a scale height of 0.64 kpc at the solar circle. This young, thick component exhibits comparable thickness and flaring strength to the canonical old thick disk but is more radially extended and systematically younger. We also identify thin disk components that formed before and after this young thick disk. Detailed analysis of the solar vicinity structure suggests that the young thick disk marks the onset of a new phase of upside-down disk formation. These findings strongly discount the role of secular dynamical heating and support a turbulent, bursty birth environment as the primary mechanism behind thick disk formation. The existence of two thick disk components suggests that the Milky Way has undergone at least two episodes of turbulent and bursty star formation, likely triggered by galaxy mergers.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling a Young Thick Disk in the Milky Way\",\"authors\":\"Jianhui Lian, Min Du, Shuai Lu, Bingqiu Chen, Gail Zasowski, Zhaoyu Li, Xiaojie Liao and Chao Liu\",\"doi\":\"10.3847/2041-8213/adccb7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The thickness of a galaxy’s disk provides a valuable probe of its formation and evolution history. Observations of the Milky Way and local galaxies have revealed an ubiquitous disk structure with two distinctive components: an old thick disk and a relatively young thin disk. The formation of this dual-disk structure and the mechanisms that develop the thickness of the disk are still unclear. Whether the disk thickness is inherited from the birth environment or is established through secular dynamical heating after formation is under debate. In this work, we identify a relatively young (∼6.6 billion yr old), geometric thick disk in the Milky Way, with a scale height of 0.64 kpc at the solar circle. This young, thick component exhibits comparable thickness and flaring strength to the canonical old thick disk but is more radially extended and systematically younger. We also identify thin disk components that formed before and after this young thick disk. Detailed analysis of the solar vicinity structure suggests that the young thick disk marks the onset of a new phase of upside-down disk formation. These findings strongly discount the role of secular dynamical heating and support a turbulent, bursty birth environment as the primary mechanism behind thick disk formation. The existence of two thick disk components suggests that the Milky Way has undergone at least two episodes of turbulent and bursty star formation, likely triggered by galaxy mergers.\",\"PeriodicalId\":501814,\"journal\":{\"name\":\"The Astrophysical Journal Letters\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/2041-8213/adccb7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/adccb7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The thickness of a galaxy’s disk provides a valuable probe of its formation and evolution history. Observations of the Milky Way and local galaxies have revealed an ubiquitous disk structure with two distinctive components: an old thick disk and a relatively young thin disk. The formation of this dual-disk structure and the mechanisms that develop the thickness of the disk are still unclear. Whether the disk thickness is inherited from the birth environment or is established through secular dynamical heating after formation is under debate. In this work, we identify a relatively young (∼6.6 billion yr old), geometric thick disk in the Milky Way, with a scale height of 0.64 kpc at the solar circle. This young, thick component exhibits comparable thickness and flaring strength to the canonical old thick disk but is more radially extended and systematically younger. We also identify thin disk components that formed before and after this young thick disk. Detailed analysis of the solar vicinity structure suggests that the young thick disk marks the onset of a new phase of upside-down disk formation. These findings strongly discount the role of secular dynamical heating and support a turbulent, bursty birth environment as the primary mechanism behind thick disk formation. The existence of two thick disk components suggests that the Milky Way has undergone at least two episodes of turbulent and bursty star formation, likely triggered by galaxy mergers.