{"title":"废液染色污泥转化为富铁基催化剂过程中温度诱导原子本征位演化的研究","authors":"Shengkun Zhang , Xunheng Jiang , Yue Chen , Chenghui Luo , Lixiao Wang , Zimo Lou , Jiang Xu , Xinhua Xu","doi":"10.1016/j.jhazmat.2025.138491","DOIUrl":null,"url":null,"abstract":"<div><div>Although the worldwide spike in the production of dyeing sludge offers a tantalizing resource to be harnessed, effective waste-to-wealth strategies remain elusive due to its intricate toxic organic matter and metallic elements. Here, we developed a temperature-rebuilding strategy to transform discarded dyeing sludge into an iron-based catalyst with favorable charge transfer for the highly efficient and sustainable Fenton-like catalytic degradation of ppm-level contaminants in wash-tank water. Using X-ray diffraction, X-ray photoelectron spectroscopy, and synchrotron X-ray absorption spectroscopy, we could precisely track and identify the gradual formation of inherent sites (i.e., Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>, FeOOH, and Fe<sub>1-x</sub>S) towards active sites (i.e., FeS and Fe<sup>0</sup>) at crystal, surface, and atomic levels. Benefiting from the reconstruction of iron sites, BC-800 effectively decomposed peroxymonosulfate into multiple radicals and nonradicals through electronic structure modulation, which enabled nearly 100 % degradation and over 60 % mineralization rate of common aromatic compounds within 30 min via ring-opening and dechlorination/substitution pathways. More delightedly, the BC-800 maintained excellent Fenton-like activity across a broad pH or multiple anions coexisted, and its device allowed extended parachlorophenol degradation for over 1 d. This work proposes a feasible “waste control by waste” approach to the reutilization of dyeing sludge, encouraging a potential solution for sustainable wastewater treatment.</div></div>","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"494 ","pages":"Article 138491"},"PeriodicalIF":12.2000,"publicationDate":"2025-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature-induced atomic intrinsic sites evolution during waste dyeing sludge into the wealthy iron-based catalyst to sustainable decontamination\",\"authors\":\"Shengkun Zhang , Xunheng Jiang , Yue Chen , Chenghui Luo , Lixiao Wang , Zimo Lou , Jiang Xu , Xinhua Xu\",\"doi\":\"10.1016/j.jhazmat.2025.138491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Although the worldwide spike in the production of dyeing sludge offers a tantalizing resource to be harnessed, effective waste-to-wealth strategies remain elusive due to its intricate toxic organic matter and metallic elements. Here, we developed a temperature-rebuilding strategy to transform discarded dyeing sludge into an iron-based catalyst with favorable charge transfer for the highly efficient and sustainable Fenton-like catalytic degradation of ppm-level contaminants in wash-tank water. Using X-ray diffraction, X-ray photoelectron spectroscopy, and synchrotron X-ray absorption spectroscopy, we could precisely track and identify the gradual formation of inherent sites (i.e., Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>, FeOOH, and Fe<sub>1-x</sub>S) towards active sites (i.e., FeS and Fe<sup>0</sup>) at crystal, surface, and atomic levels. Benefiting from the reconstruction of iron sites, BC-800 effectively decomposed peroxymonosulfate into multiple radicals and nonradicals through electronic structure modulation, which enabled nearly 100 % degradation and over 60 % mineralization rate of common aromatic compounds within 30 min via ring-opening and dechlorination/substitution pathways. More delightedly, the BC-800 maintained excellent Fenton-like activity across a broad pH or multiple anions coexisted, and its device allowed extended parachlorophenol degradation for over 1 d. This work proposes a feasible “waste control by waste” approach to the reutilization of dyeing sludge, encouraging a potential solution for sustainable wastewater treatment.</div></div>\",\"PeriodicalId\":361,\"journal\":{\"name\":\"Journal of Hazardous Materials\",\"volume\":\"494 \",\"pages\":\"Article 138491\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2025-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hazardous Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304389425014062\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304389425014062","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Temperature-induced atomic intrinsic sites evolution during waste dyeing sludge into the wealthy iron-based catalyst to sustainable decontamination
Although the worldwide spike in the production of dyeing sludge offers a tantalizing resource to be harnessed, effective waste-to-wealth strategies remain elusive due to its intricate toxic organic matter and metallic elements. Here, we developed a temperature-rebuilding strategy to transform discarded dyeing sludge into an iron-based catalyst with favorable charge transfer for the highly efficient and sustainable Fenton-like catalytic degradation of ppm-level contaminants in wash-tank water. Using X-ray diffraction, X-ray photoelectron spectroscopy, and synchrotron X-ray absorption spectroscopy, we could precisely track and identify the gradual formation of inherent sites (i.e., Fe2(SO4)3, FeOOH, and Fe1-xS) towards active sites (i.e., FeS and Fe0) at crystal, surface, and atomic levels. Benefiting from the reconstruction of iron sites, BC-800 effectively decomposed peroxymonosulfate into multiple radicals and nonradicals through electronic structure modulation, which enabled nearly 100 % degradation and over 60 % mineralization rate of common aromatic compounds within 30 min via ring-opening and dechlorination/substitution pathways. More delightedly, the BC-800 maintained excellent Fenton-like activity across a broad pH or multiple anions coexisted, and its device allowed extended parachlorophenol degradation for over 1 d. This work proposes a feasible “waste control by waste” approach to the reutilization of dyeing sludge, encouraging a potential solution for sustainable wastewater treatment.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.