Amirhossein Ghezelbash, Satyadhrik Sharma, Antonio Maria D'Altri, Paulo B. Lourenço, Jan G. Rots, Francesco Messali
{"title":"基于隐式块的高保真无筋砖砌体墙动态面外双向弯曲数值模拟的挑战","authors":"Amirhossein Ghezelbash, Satyadhrik Sharma, Antonio Maria D'Altri, Paulo B. Lourenço, Jan G. Rots, Francesco Messali","doi":"10.1002/eqe.4337","DOIUrl":null,"url":null,"abstract":"<p>This study deals with the high-fidelity block-based finite element simulation of dynamic out-of-plane (OOP) responses of unreinforced masonry (URM) walls, explicitly focusing on two-way bending behaviors under seismic loads, which is a common critical failure mode in real-world masonry structures. While experimental shake-table tests provide valuable insights into these behaviors, their high costs, complexity, and limited scalability highlight the need for advanced numerical modeling approaches. A state-of-the-art block-based finite element modeling strategy that conceives masonry as an assemblage of 3D damaging blocks interacting via contact-based cohesive-frictional zero-thickness interfaces, previously proposed for simulating cyclic quasi-static and dynamic one-way bending tests, is here extended for the first time to the simulation of incremental dynamic shake-table tests on OOP two-way spanning URM full-scale walls, subjected to a sequence of dynamic loads. The numerical models track the reference experimental behaviors with high accuracy in terms of collapse onset, failure mechanism, experienced acceleration and displacements, and hysteretic response. The effects of variations in mechanical properties, boundary conditions, and damping on the dynamic response are explored in a sensitivity study. The results indicate that slight changes in these parameters can lead to considerable differences in outcomes. This highlights the chaotic nature of the dynamic response of masonry walls, especially in near-collapse conditions, which makes probabilistic approaches more suitable for predicting masonry OOP dynamics. The proposed numerical methodology appears compatible with statistical frameworks, given the limited costs with respect to experimental tests, and it extends knowledge beyond physical experiments.</p>","PeriodicalId":11390,"journal":{"name":"Earthquake Engineering & Structural Dynamics","volume":"54 7","pages":"1836-1858"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eqe.4337","citationCount":"0","resultStr":"{\"title\":\"Challenges in High-Fidelity Implicit Block-Based Numerical Simulation of Dynamic Out-of-Plane Two-Way Bending in Unreinforced Brick Masonry Walls\",\"authors\":\"Amirhossein Ghezelbash, Satyadhrik Sharma, Antonio Maria D'Altri, Paulo B. Lourenço, Jan G. Rots, Francesco Messali\",\"doi\":\"10.1002/eqe.4337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study deals with the high-fidelity block-based finite element simulation of dynamic out-of-plane (OOP) responses of unreinforced masonry (URM) walls, explicitly focusing on two-way bending behaviors under seismic loads, which is a common critical failure mode in real-world masonry structures. While experimental shake-table tests provide valuable insights into these behaviors, their high costs, complexity, and limited scalability highlight the need for advanced numerical modeling approaches. A state-of-the-art block-based finite element modeling strategy that conceives masonry as an assemblage of 3D damaging blocks interacting via contact-based cohesive-frictional zero-thickness interfaces, previously proposed for simulating cyclic quasi-static and dynamic one-way bending tests, is here extended for the first time to the simulation of incremental dynamic shake-table tests on OOP two-way spanning URM full-scale walls, subjected to a sequence of dynamic loads. The numerical models track the reference experimental behaviors with high accuracy in terms of collapse onset, failure mechanism, experienced acceleration and displacements, and hysteretic response. The effects of variations in mechanical properties, boundary conditions, and damping on the dynamic response are explored in a sensitivity study. The results indicate that slight changes in these parameters can lead to considerable differences in outcomes. This highlights the chaotic nature of the dynamic response of masonry walls, especially in near-collapse conditions, which makes probabilistic approaches more suitable for predicting masonry OOP dynamics. The proposed numerical methodology appears compatible with statistical frameworks, given the limited costs with respect to experimental tests, and it extends knowledge beyond physical experiments.</p>\",\"PeriodicalId\":11390,\"journal\":{\"name\":\"Earthquake Engineering & Structural Dynamics\",\"volume\":\"54 7\",\"pages\":\"1836-1858\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eqe.4337\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earthquake Engineering & Structural Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eqe.4337\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Engineering & Structural Dynamics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eqe.4337","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Challenges in High-Fidelity Implicit Block-Based Numerical Simulation of Dynamic Out-of-Plane Two-Way Bending in Unreinforced Brick Masonry Walls
This study deals with the high-fidelity block-based finite element simulation of dynamic out-of-plane (OOP) responses of unreinforced masonry (URM) walls, explicitly focusing on two-way bending behaviors under seismic loads, which is a common critical failure mode in real-world masonry structures. While experimental shake-table tests provide valuable insights into these behaviors, their high costs, complexity, and limited scalability highlight the need for advanced numerical modeling approaches. A state-of-the-art block-based finite element modeling strategy that conceives masonry as an assemblage of 3D damaging blocks interacting via contact-based cohesive-frictional zero-thickness interfaces, previously proposed for simulating cyclic quasi-static and dynamic one-way bending tests, is here extended for the first time to the simulation of incremental dynamic shake-table tests on OOP two-way spanning URM full-scale walls, subjected to a sequence of dynamic loads. The numerical models track the reference experimental behaviors with high accuracy in terms of collapse onset, failure mechanism, experienced acceleration and displacements, and hysteretic response. The effects of variations in mechanical properties, boundary conditions, and damping on the dynamic response are explored in a sensitivity study. The results indicate that slight changes in these parameters can lead to considerable differences in outcomes. This highlights the chaotic nature of the dynamic response of masonry walls, especially in near-collapse conditions, which makes probabilistic approaches more suitable for predicting masonry OOP dynamics. The proposed numerical methodology appears compatible with statistical frameworks, given the limited costs with respect to experimental tests, and it extends knowledge beyond physical experiments.
期刊介绍:
Earthquake Engineering and Structural Dynamics provides a forum for the publication of papers on several aspects of engineering related to earthquakes. The problems in this field, and their solutions, are international in character and require knowledge of several traditional disciplines; the Journal will reflect this. Papers that may be relevant but do not emphasize earthquake engineering and related structural dynamics are not suitable for the Journal. Relevant topics include the following:
ground motions for analysis and design
geotechnical earthquake engineering
probabilistic and deterministic methods of dynamic analysis
experimental behaviour of structures
seismic protective systems
system identification
risk assessment
seismic code requirements
methods for earthquake-resistant design and retrofit of structures.