大型火暴露槽试验的数值研究——呈现不同的热解模拟方法和数值结果

IF 2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ranjith Nandish, Christian Knaust, Jochen Zehfuß
{"title":"大型火暴露槽试验的数值研究——呈现不同的热解模拟方法和数值结果","authors":"Ranjith Nandish,&nbsp;Christian Knaust,&nbsp;Jochen Zehfuß","doi":"10.1002/fam.3287","DOIUrl":null,"url":null,"abstract":"<p>The need for numerical-based approaches to investigate the fire behaviour in buildings with combustible components is growing due to the increasing use of timber by the construction industry to meet the ‘Climate Action Plan 2050’. This requires consideration of the complex kinetic processes that take place during the burning of the wood in the numerical models. This is accomplished by using computational fluid dynamics (CFD) to numerically model the material pyrolysis and combustion processes. This article presents three different approaches for simulating the behaviour of a wood crib fire using the fire dynamics simulator (FDS). These approaches are based on either prescribing the burning rate of the wood directly from the physical experiments or using the kinetic parameters to govern the underlying processes, such as pyrolysis. Wooden crib fire experiments carried out by the RISE Research Institute in Sweden inside the combustion chamber that were used to validate all the methods. The numerical results from the method, that utilised the experimentally determined burning rate, were in good agreement with the experimental results, with a maximum deviation of 6% in the case of HRR. On the other hand, the model that needs kinetic parameters as its input has shown maximum discrepancies of 12% and 33% compared to experimental results. These methods are sensitive to the input parameters and the extent of dependency needs further investigation.</p>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"49 4","pages":"371-387"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fam.3287","citationCount":"0","resultStr":"{\"title\":\"Numerical Investigations of a Large Fire Exposure Crib Test—Presenting Different Pyrolysis Modelling Methodologies and Numerical Results\",\"authors\":\"Ranjith Nandish,&nbsp;Christian Knaust,&nbsp;Jochen Zehfuß\",\"doi\":\"10.1002/fam.3287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The need for numerical-based approaches to investigate the fire behaviour in buildings with combustible components is growing due to the increasing use of timber by the construction industry to meet the ‘Climate Action Plan 2050’. This requires consideration of the complex kinetic processes that take place during the burning of the wood in the numerical models. This is accomplished by using computational fluid dynamics (CFD) to numerically model the material pyrolysis and combustion processes. This article presents three different approaches for simulating the behaviour of a wood crib fire using the fire dynamics simulator (FDS). These approaches are based on either prescribing the burning rate of the wood directly from the physical experiments or using the kinetic parameters to govern the underlying processes, such as pyrolysis. Wooden crib fire experiments carried out by the RISE Research Institute in Sweden inside the combustion chamber that were used to validate all the methods. The numerical results from the method, that utilised the experimentally determined burning rate, were in good agreement with the experimental results, with a maximum deviation of 6% in the case of HRR. On the other hand, the model that needs kinetic parameters as its input has shown maximum discrepancies of 12% and 33% compared to experimental results. These methods are sensitive to the input parameters and the extent of dependency needs further investigation.</p>\",\"PeriodicalId\":12186,\"journal\":{\"name\":\"Fire and Materials\",\"volume\":\"49 4\",\"pages\":\"371-387\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fam.3287\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fire and Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fam.3287\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire and Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fam.3287","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于建筑行业越来越多地使用木材来满足“2050年气候行动计划”,因此需要基于数字的方法来调查具有可燃部件的建筑物的火灾行为。这需要考虑数值模型中木材燃烧过程中发生的复杂动力学过程。这是通过使用计算流体动力学(CFD)对材料热解和燃烧过程进行数值模拟来实现的。本文介绍了三种不同的方法来模拟一个木床火灾的行为使用火灾动力学模拟器(FDS)。这些方法要么基于直接从物理实验中规定木材的燃烧速度,要么基于使用动力学参数来控制潜在的过程,如热解。由瑞典RISE研究所在燃烧室内进行的木槽火灾实验,用于验证所有方法。利用实验确定的燃烧速率,该方法的数值结果与实验结果吻合良好,在HRR情况下最大偏差为6%。另一方面,需要动力学参数作为输入的模型与实验结果的最大差异为12%和33%。这些方法对输入参数敏感,依赖程度有待进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Numerical Investigations of a Large Fire Exposure Crib Test—Presenting Different Pyrolysis Modelling Methodologies and Numerical Results

Numerical Investigations of a Large Fire Exposure Crib Test—Presenting Different Pyrolysis Modelling Methodologies and Numerical Results

The need for numerical-based approaches to investigate the fire behaviour in buildings with combustible components is growing due to the increasing use of timber by the construction industry to meet the ‘Climate Action Plan 2050’. This requires consideration of the complex kinetic processes that take place during the burning of the wood in the numerical models. This is accomplished by using computational fluid dynamics (CFD) to numerically model the material pyrolysis and combustion processes. This article presents three different approaches for simulating the behaviour of a wood crib fire using the fire dynamics simulator (FDS). These approaches are based on either prescribing the burning rate of the wood directly from the physical experiments or using the kinetic parameters to govern the underlying processes, such as pyrolysis. Wooden crib fire experiments carried out by the RISE Research Institute in Sweden inside the combustion chamber that were used to validate all the methods. The numerical results from the method, that utilised the experimentally determined burning rate, were in good agreement with the experimental results, with a maximum deviation of 6% in the case of HRR. On the other hand, the model that needs kinetic parameters as its input has shown maximum discrepancies of 12% and 33% compared to experimental results. These methods are sensitive to the input parameters and the extent of dependency needs further investigation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fire and Materials
Fire and Materials 工程技术-材料科学:综合
CiteScore
4.60
自引率
5.30%
发文量
72
审稿时长
3 months
期刊介绍: Fire and Materials is an international journal for scientific and technological communications directed at the fire properties of materials and the products into which they are made. This covers all aspects of the polymer field and the end uses where polymers find application; the important developments in the fields of natural products - wood and cellulosics; non-polymeric materials - metals and ceramics; as well as the chemistry and industrial applications of fire retardant chemicals. Contributions will be particularly welcomed on heat release; properties of combustion products - smoke opacity, toxicity and corrosivity; modelling and testing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信