粉煤灰、TiO2、hBN和B4C纳米颗粒增强:粉末冶金制备金属镁的新方法

IF 3.4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Essam B. Moustafa, Abdulraheem H. Alyoubi, Mahmoud A. Alzahrani, Ahmed O. Mosleh, Asmaa M. Khalil
{"title":"粉煤灰、TiO2、hBN和B4C纳米颗粒增强:粉末冶金制备金属镁的新方法","authors":"Essam B. Moustafa,&nbsp;Abdulraheem H. Alyoubi,&nbsp;Mahmoud A. Alzahrani,&nbsp;Ahmed O. Mosleh,&nbsp;Asmaa M. Khalil","doi":"10.1002/adem.202402261","DOIUrl":null,"url":null,"abstract":"<p>\nThe study explores the impact of fly ash and nanoparticle reinforcements (TiO<sub>2</sub>, hBN, B<sub>4</sub>C) on magnesium alloy properties. Fly ash increases porosity and reduces density. All reinforcements reduce conductivity, and B<sub>4</sub>C significantly decrease thermal expansion. This decrease is attributed to the particles' barrier effect, lower CTEs, and ability to promote uniform particle dispersion. The distribution of reinforcing particles varies, with B<sub>4</sub>C and hBN showing the most even dispersion. All reinforcements improve particle homogeneity, enhancing microhardness, with B<sub>4</sub>C exhibiting the most significant enhancement of 72%. All composite materials show increased compression strength, with B<sub>4</sub>C showing the most significant improvement of over 50%. The Mg hybrid composites display higher longitudinal and shear velocities than pure Mg. B<sub>4</sub>C shows the most substantial increase, with a 30% rise in longitudinal velocity and a 22% increase in shear velocity. Moreover, all composite materials exhibit larger Young's and shear moduli than pure Mg. B<sub>4</sub>C demonstrates the most notable enhancement, with a 50% increase in Young's modulus and a 45% increase in shear modulus. These enhancements result from the composites' heightened rigidity and decreased mass caused by the reinforcements, further amplified by the optimized spatial distribution of particles.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"27 9","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fly Ash, TiO2, hBN, and B4C Nanoparticle Reinforcement: A Novel Approach to Magnesium Metal via Powder Metallurgy\",\"authors\":\"Essam B. Moustafa,&nbsp;Abdulraheem H. Alyoubi,&nbsp;Mahmoud A. Alzahrani,&nbsp;Ahmed O. Mosleh,&nbsp;Asmaa M. Khalil\",\"doi\":\"10.1002/adem.202402261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>\\nThe study explores the impact of fly ash and nanoparticle reinforcements (TiO<sub>2</sub>, hBN, B<sub>4</sub>C) on magnesium alloy properties. Fly ash increases porosity and reduces density. All reinforcements reduce conductivity, and B<sub>4</sub>C significantly decrease thermal expansion. This decrease is attributed to the particles' barrier effect, lower CTEs, and ability to promote uniform particle dispersion. The distribution of reinforcing particles varies, with B<sub>4</sub>C and hBN showing the most even dispersion. All reinforcements improve particle homogeneity, enhancing microhardness, with B<sub>4</sub>C exhibiting the most significant enhancement of 72%. All composite materials show increased compression strength, with B<sub>4</sub>C showing the most significant improvement of over 50%. The Mg hybrid composites display higher longitudinal and shear velocities than pure Mg. B<sub>4</sub>C shows the most substantial increase, with a 30% rise in longitudinal velocity and a 22% increase in shear velocity. Moreover, all composite materials exhibit larger Young's and shear moduli than pure Mg. B<sub>4</sub>C demonstrates the most notable enhancement, with a 50% increase in Young's modulus and a 45% increase in shear modulus. These enhancements result from the composites' heightened rigidity and decreased mass caused by the reinforcements, further amplified by the optimized spatial distribution of particles.</p>\",\"PeriodicalId\":7275,\"journal\":{\"name\":\"Advanced Engineering Materials\",\"volume\":\"27 9\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Engineering Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adem.202402261\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adem.202402261","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究了粉煤灰和纳米颗粒增强剂(TiO2、hBN、B4C)对镁合金性能的影响。粉煤灰增加孔隙度,降低密度。所有增强材料均能降低导电性,B4C显著降低热膨胀。这种减少归因于颗粒的屏障效应、较低的cte以及促进颗粒均匀分散的能力。增强颗粒的分布各不相同,B4C和hBN的分散最均匀。所有增强剂都改善了颗粒的均匀性,提高了显微硬度,其中B4C的增强效果最显著,达到72%。所有复合材料的抗压强度都有所提高,其中B4C的抗压强度提高幅度最大,超过50%。与纯Mg相比,Mg混杂复合材料具有更高的纵向和剪切速度。B4C增加幅度最大,纵向速度增加30%,剪切速度增加22%。此外,所有复合材料的杨氏模量和剪切模量均大于纯Mg。B4C表现出最显著的增强,杨氏模量增加50%,剪切模量增加45%。这些增强是由于增强剂提高了复合材料的刚度和降低了复合材料的质量,而颗粒空间分布的优化进一步放大了这些增强效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fly Ash, TiO2, hBN, and B4C Nanoparticle Reinforcement: A Novel Approach to Magnesium Metal via Powder Metallurgy

The study explores the impact of fly ash and nanoparticle reinforcements (TiO2, hBN, B4C) on magnesium alloy properties. Fly ash increases porosity and reduces density. All reinforcements reduce conductivity, and B4C significantly decrease thermal expansion. This decrease is attributed to the particles' barrier effect, lower CTEs, and ability to promote uniform particle dispersion. The distribution of reinforcing particles varies, with B4C and hBN showing the most even dispersion. All reinforcements improve particle homogeneity, enhancing microhardness, with B4C exhibiting the most significant enhancement of 72%. All composite materials show increased compression strength, with B4C showing the most significant improvement of over 50%. The Mg hybrid composites display higher longitudinal and shear velocities than pure Mg. B4C shows the most substantial increase, with a 30% rise in longitudinal velocity and a 22% increase in shear velocity. Moreover, all composite materials exhibit larger Young's and shear moduli than pure Mg. B4C demonstrates the most notable enhancement, with a 50% increase in Young's modulus and a 45% increase in shear modulus. These enhancements result from the composites' heightened rigidity and decreased mass caused by the reinforcements, further amplified by the optimized spatial distribution of particles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Engineering Materials
Advanced Engineering Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
5.60%
发文量
544
审稿时长
1.7 months
期刊介绍: Advanced Engineering Materials is the membership journal of three leading European Materials Societies - German Materials Society/DGM, - French Materials Society/SF2M, - Swiss Materials Federation/SVMT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信